Modification of GNU-Compiler to support UTF16-String literals

Purpose

Support u‘c’ and u“UTF16 string literal” analogue to L‘c’ and L“wide string literal”.

Specification

(see chapter 6.1.4 “String literals” of the C89 standard)

u-string-literal:

u“s-char-sequenceopt”

s-char-sequence:

s-char

s-char-sequence s-char

s-char:

any member of the source character set except

the double-quote “, backslash \, or new-line character

escape-sequence

Implementation

Our approach was to search all places where L-literals where handled explicitly and to add analogue coding for UTF16 string literals.

Step 1: Scanning u-literals

We identified the place in the compiler where L-literals where handled by the scanner and added analogue handling for the u-literals.

As type for the scanned u-literals we used an alias of type unsigned short or unsigned short array, respectively.

Step 2: Parser

In the parser there was only one location where special handling of L-literals occurred:

the routine that concatenated several strictly adjacent literals into one literal.

Step 3: Semantic analysis

In the semantic analysis we found three places where special handling of L-literals occurred:

· the check, if char/wide char pointers are initialized with a string literal of the proper type

· the permission to convert string literals implicitly to non-const char/wide char pointer

· the initialization of string arrays without the terminating 0 of the string literal (only allowed in C)

Step 4: Code generation

In the code generation and optimization there was no location, where special handling of L-literals occurred.

