LC/MS Preprocessing and Analysis with xcms

Colin A. Smith
April 25, 2006

Introduction

This document describes how to use zems to preprocess LC/MS data for relative quan-
titation and statistical analysis. It gives examples of how visualization can be used
throughout the process and to display final results. An overview of the preprocess-
ing/analysis methodology, along with the function names associated with each step, is
shown in Figure [I}

1 Raw Data File Preparation

The zcms package reads full-scan LC/MS data from ATA /ANDI format NetCDF, mzXML,
and mzData files. All data to be analyzed by zcms must first be converted to one of those
file formats. Software packages for many instruments are be able to export to NetCDF.
For information about how to export to NetCDF, please consult the documentation that
came with your instrument’s software. The online help of most packages frequently use
the terms “CDF” or “AIA” when referring to NetCDF format. In addition to NetCDF,
mzXML exporters for a number of instruments are also available/l]

After exporting all files to NetCDF/mzXML/mzData format, they should be put in
a location that will remain the same throughout the analysis. That is because zcms
records the location of the raw data files and refers back to them a number of times
during preprocessing and analysis.

In most cases, LC/MS files that were acquired under different conditions should not
be compared. For instance, positive and negative ionization mode files will have no ions
in common and should thus be preprocessed separately. Similarly, data files acquired
with different elution gradients should not be processed together.

Another important consideration is the directory structure in which the files are or-
ganized. zcms uses sample class information during preprocessing to help decide which
groups of peaks are significant. If organized into subdirectories, samples will automati-
cally be assigned to separate classes based on their location. Samples may be separated

'http://sashimi.sourceforge.net/software_glossolalia.html

http://sashimi.sourceforge.net/software_glossolalia.html

Filter and
Identify Peaks

xcmsSet ()

Y

Match Peaks \/w Retention Time

Across Samples Correction
L group ()) retcor()
Raw +
LC/MS (" Fill in Missing |

Data || Ppeak Data

NetCDF fillPeaks()
mzXML ~
mzData +

Statistically
Analyze Results
| difffreport()

Y

Visualize
Important Peaks
getEIC()

J/

J/

Figure 1: Flow chart showing a high-level overview of the preprocessing/analysis
methodology employed by zems. Function/method names corresponding to each step
are also given.

into class based on tissue type, mutation, gender, disease, or time. For example, if you
are analyzing the longitudinal effect of a drug in two patient groups, you may wish to put
the groups into two directories “GroupA” and “GroupB”. Within each of those directo-
ries, you could further separate the samples by the time they were taken, such as “Day1”,
“Day2”, etc. In zems, they will be automatically assigned class names “GroupA /Day1”,
“GroupA /Day?2”, etc.

For the purposes of demonstration, we will use a subset of the data from [Saghatelian
et al.| (2004) examining the metabolic consequences of knocking out the fatty acid amide
hydrolase (FAAH) gene in mice. The raw data files are contained in the cdf directory of
the faahKO data package. There are samples from the spinal cords of 6 knockout mice
and 6 wild-type mice placed in two subdirectories. Each file contains centroided data
acquired in positive ion mode from 200-600 m/z and 2500-4500 seconds. To access the
NetCDF files, we first locate the cdf directory in the faahKO package.

> cdfpath <- system.file("cdf", package = "faahK0")
> list.files(cdfpath, recursive = TRUE)

[1] "KO/kol5.CDF" "KO/ko16.CDF" "KO/ko18.CDF" "KO/ko19.CDF" "KO/ko21.CDF"
[6] "KO/ko22.CDF" "WT/wt15.CDF" "WT/wtl16.CDF" "WT/wt18.CDF" "WT/wt19.CDF"
[11] "WT/wt21.CDF" "WT/wt22.CDF"

2 Filtration and Peak Identification

The class of objects used for preprocessing analyte data from multiple LC/MS files is
zemsSet. It stores peak lists and provides methods for grouping and aligning those peaks.
To create an xcmsSet object from a set of NetCDF files, use the xcmsSet () constructor
function. It handles batch peak picking and generation of the zemsSet object. There are
a number of ways you can specify the files it should read. By default, it will recursively
search through the current directory for NetCDF /mzXML/mzData files. Alternatively,
you can manually specify the files you are interested in, as shown below.

During peak identification, xcms uses a sepearate line for each sample to report on
the status of processing. It outputs out pairs of numbers separated by a colon. The
first number is the m/z it is currently processing. The second number is the number of
peaks that have been identified so far. It is imporant to note that the number may be
significantly larger than the final number of peaks as a vicinity elimination posprocessing
step removes duplicate peaks corresponding to the same ion.

> library(xcms)
> cdffiles <- list.files(cdfpath, recursive = TRUE, full.names = TRUE)
> xset <- xcmsSet(cdffiles)

kol15: 250:39 300:108 350:234 400:351 450:447 500:551 550:707 600:883
kol16: 250:45 300:137 350:285 400:412 450:526 500:676 550:879 600:1080

ko18: 250:27 300:101 350:239 400:352 450:428 500:521 550:666 600:788
ko19: 250:19 300:70 350:179 400:271 450:316 500:391 550:520 600:614
ko21: 250:26 300:67 350:176 400:271 450:334 500:415 550:530 600:616
ko22: 250:32 300:74 350:191 400:294 450:353 500:440 550:553 600:627
wtl1b: 250:44 300:113 350:221 400:334 450:433 500:556 550:711 600:871
wtl6: 250:29 300:110 350:237 400:356 450:451 500:564 550:735 600:945
wtl18: 250:27 300:92 350:217 400:316 450:378 500:455 550:582 600:701
wtl19: 250:23 300:69 350:170 400:257 450:309 500:378 550:512 600:597
wt21: 250:30 300:72 350:165 400:239 450:294 500:378 550:509 600:615
wt22: 250:31 300:83 350:196 400:291 450:370 500:490 550:640 600:796

> xset

An "xcmsSet" object with 12 samples

Time range: 2506.1-4147.7 seconds (41.8-69.1 minutes)
Mass range: 200.1-599.3338 m/z

Peaks: 4777 (about 398 per sample)

Peak Groups: 0

Sample classes: KO, WT

Profile settings: method

bin
step 1

0.
Memory usage: 0.64 MB

The default arguments for xcmsSet should work acceptably in most cases. However,
there are a number of parameters that may need to be optimized for a particular in-
strument or group of samples. The full set of parameters can be seen by viewing the
documentation for the xcmsSet function and findPeaks method. We will discuss several
of the most important parameters here.

One parameter to consider is the Gaussian model peak width used for matched
filtration, an integral part of the peak detection algorithm. For a discussion of how
model peak width affects the signal to noise ratio, see Danielsson et al.| (2002). It can be
specified as either the standard deviation (sigma) or full width at half maximum (fwhm).
By default, a FWHM of 30 seconds is used. Depending on the type of chromatography;,
the correct model peak width can be quite different. One means of determining the peak
width is to fit the Gaussian function to one or more peaks in representative samples
produced with your experimental protocol. Functionality for doing so is provided in the
plotChrom method with the fitgauss argument set to TRUE.

Several parameters depend on the resolution your mass spectrometer. Prior to
matched filtration, the peak detection algorithm creates extracted ion base peak chro-
matograms (EIBPC) on a fixed step size defined by the step argument (default 0.1 m/z).

4

To take into account uncertainties in scan to scan mass accuracy, the peak identification
algorithm combines a given number of EIBPCs prior to filtration and peak detection,
as defined by the steps argument. The default value, 2, combines EIBPCs 1-2, 2-3, 3-4,
ete. If the peak width is significantly greater than the step size, you may wish to turn
off combination using a value of 1. If your scan to scan accuracy is worse, you may wish
to increase the number of scans combined. For example, a value of 3 would combine
EIBPCs 1-3, 2-4, 3-5, etc.

Another factor to consider is the algorithm by which EIBPCs are produced. One way
of thinking about that process is as a transformation of the data from being separate
lists of mass/intensity pairs (one list for each scan) to a matrix with rows representing
equally spaced masses and a column for each scan. Data transformed into such a matrix
is usually referred to as being in profile mode. To do so, each scan of unequally spaced
masses must be mapped onto a column of the final matrix. The algorithm used to do so
is selected using the profmethod argument and can be either “bin”, “binlin”, “binlinbase”,
or “intlin”.

The simplest algorithm, “bin”, simply bins the intensity into the matrix cell closest
to it in mass. If more than one intensity value is assigned to the same cell, then the
greatest intensity is used. All other matrix cells are left at zero. It is the default and
is especially useful for centroided data. “binlin” does the same thing except that it uses
linear interpolation to fill in cells that otherwise would have been left at zero. It works
well for sparsely populated continuum data.

Some mass spectrometry software allows the user to set an intensity threshold be-
low which no mass/intensity values are recorded in continuum mode. When the mass
spectral signal falls below that threshold, simple linear interpolation will not provide a
good approximation of the original signal, instead creating artificially high background.
To address that, the “binlinbase” method uses linear interpolation between data points
within 0.15 m/z of each other, and otherwise inserts a basal intensity value set to half of
the minimum intensity. Those specific parameters can be changed using the profparam
argument. See documentation for the function profBinLinBase for more details.

The last method, “intlin”; uses integration and linear interpolation between mass/intensity
pairs to determine the equally spaced intensity values. This has the advantage of be-
ing numerically stable regardless of the mass step size. However, it is more useful for
visualization than peak identification and is generally not recommended as such.

3 Matching Peaks Across Samples

After peak identification, peaks representing the same analyte across samples must be
placed into groups. That is accomplished with the group method, which returns a new
zemsSet object with the additional group information. The grouping process is non-
destructive and does not affect the other data stored in the xemsSet object. Therefore,
we can safely replace the xset object with the grouped version. The grouping algorithm

processes the peak lists in order of increasing mass and will regularly output the mass
it is currently working on.

> xset <- group(xset)
262 325 387 450 512 575

There are several grouping parameters to consider optimizing for your chromatogra-
phy and mass spectrometer. Please consult the group documentation for more details.
To see what the algorithm is doing while running, use the sleep argument to specify
a time (in seconds) to pause and plot each iteration. That can be quite useful for
visualizing parameter effects.

4 Retention Time Correction

After matching peaks into groups, zcms can use those groups to identify and correct
correlated drifts in retention time from run to run. The aligned peaks can then be
used for a second pass of peak grouping which will be more accurate than the first. The
whole process can be repeated in an iterative fashion, although we will only demonstrate
a single pass of retention time alignment here.

Not all peak groups will be helpful for identifying retention time drifts. Some groups
may be missing peaks from a large fraction of samples and thus provide an incomplete
picture of the drift at that time point. Still others may contain multiple peaks from
the same sample, which is a sign of impropper grouping. xcms ignores those groups by
only considering “well-behaved” peak groups which are missing at most one sample and
have at most one extra peak. (Those values can be changed with the missing and extra
arguments.)

For each of those well-behaved groups, the algorithm calculates a median retention
time and, for every sample, a deviation from that median. Within a sample, the ob-
served deviation generally changes over time in a nonlinear fashion. Those changes are
approximated using a local polynomial regression technique implemented in the loess
function. By default, the curve fitting is done using least-squares on all data points.
However, it is possible to enable outlier detection and removal by setting the family
argument to "symmetric", as shown here.

Retention time correction is performed by the retcor method, which returns an xems-
Set object with corrected retention times. Because it changes the retention times of all
peaks, it is important to store the new object under a new variable name. That will
allow you to backtrack and repeat retention time correction if necessary.

> xset2 <- retcor(xset, family = "symmetric", plottype = "mdevden")

Retention Time Correction Groups: 132

The above command uses the plottype argument to produce a plot, shown in Figure[2]
which is useful for supervising the algorithm. It includes the data points used for loess
regression and the resulting deviation profiles. It additionally shows the distribution of
peak groups across retention time.

After retention time correction, the initial peak grouping becomes invalid and is
discarded. Therefore, the resulting object needs to be regrouped. Here, we decrease the
inclusiveness of the grouping using the bw argument (default 30 seconds).

> xset2 <- group(xset2, bw = 10)

262 325 387 450 512 575

5 Filling in Missing Peak Data

After the second pass of peak grouping, there will still be peak groups which are missing
peaks from some of the samples. That can occur because peaks were missed during peak
identification or because an analyte was not present in a sample. In any case, those
missing data points can be filled in by rereading the raw data files and integrating them
in the regions of the missing peaks. That is performed using the fillPeaks method, which
returns a zemsSet object with the filled in peak data. While running, it outputs the
name of the sample it is currently processing.

> xset3 <- fillPeaks(xset2)
kol5 kol16 kol8 kol9 ko21 ko22 wtlb wtl6 wtl8 wtl9 wt21 wt22
> xset3

An "xcmsSet" object with 12 samples

Time range: 2501.2-4148.9 seconds (41.7-69.1 minutes)
Mass range: 200.1-599.3338 m/z

Peaks: 6126 (about 510 per sample)

Peak Groups: 406

Sample classes: KO, WT

Profile settings: method

= bin
step = 0.1

Memory usage: 0.812 MB

Retention Time Deviation vs. Retention Time

20
|

10

Retention Time Deviation
0
|

-10

— All
—— Correction

Peak Density

I I I I I
2500 3000 3500 4000 4500

Retention Time

Figure 2: Retention time deviation profiles used for aligning the samples. The data
points used for generating each profile are also shown. All times are in seconds. A
negative number indicates a sample was eluting before most of the others, and vice
versa. Samples that were acquired on the same day are colored similarly and have
correlated deviation profiles, as expected. Below, kernel density estimation is used to
show the distribution of all peaks and those peaks used as standards for retention time
correction. Examples of two peaks before and after alignment are shown in Figure [4]

6 Analyzing and Visualizing Results

A report showing the most statistically significant differences in analyte intensities can be
generated with the diffreport method. It will automatically generate extracted ion chro-
matograms for a given number of them, in this case 10. Several of those chromatograms

are shown in Figure [3]

> reporttab <- diffreport(xset3, "WT", "K0", "example", 10, metlin = 0.15)
kol5 kol6 kol8 kol9 ko21 ko22 wtlb wtl6 wtl8 wtl9 wt2l wt22
> reporttab[1:4,]
name fold tstat pvalue mzmed mzmin mzmax rtmed

1 M300T3390 65.693594 14.44368 5.026336e-08 300.1898 300.1706 300.2000 3390.146
2 M301T3389 5.894488 15.57995 6.651694e-08 301.1879 301.1659 301.1949 3389.207
3 M298T3187 3.864113 11.74441 4.072374e-07 298.1508 298.1054 298.1592 3186.617
4 M491T3397 12.444463 15.47780 2.013151e-06 491.2000 491.1877 491.2063 3397.172

rtmin rtmax npeaks KO WT
1 3386.760 3395.839 12 6 6
2 3386.760 3392.101 7 6 1
3 3184.407 3191.423 4 4 O
4 3366.943 3425.549 6 6 O

D W N - D w N - W N -

S W N -

kolb
4534353.62273683
962353.429578945
180780.817277777
432037.001363632
ko21
4733236.07999997
984787 .204999993
157228.094764151
294816.2356500
wt18
645526.704947367
142574 .884693358
54656 .2680726944
47001.7521572203

ko16

4980914 .48421051
1047934 .14136842
209836.916423163
332159.07255
ko22

3931592.586
806171.4729
220288.6218
373577.607619048
wtl19
634108.848947367
140053.569493454
76563.7966733777
49347 .0961845966

metlin
http://metlin.scripps.edu/metabo_list.php?mass_min=299.04&mass_max=299.34
http://metlin.scripps.edu/metabo_list.php?mass_min=300.04&mass_max=300.34

http://metlin.scripps.edu/metabo_list.php?mass_min=297&mass_max=297.3
http://metlin.scripps.edu/metabo_list.php?mass_min=490.05&mass_max=490.35

ko18 ko19
5290739.13866664 4564262 .89684209
1109303.04472222 946943.392842103
191015.910842105 190626.849523810
386966.75145 334951.452952381
wtlb wtl6
349660.88536842 491793.181333331
83688.0286977128 120084 .424278159
16215.7752468823 43751.9780580563
43306.8763785074 13044.2804878080
wt21 wt22

1438254 .44559999 1364627 .84400000
215929.907677002 291392.971409092
54856.3928506762 51508.4768389959
11955.7061630360 8474.15432285412

Extracted lon Chromatogram: 300.1 - 300.2 m/z Extracted lon Chromatogram: 301.1 - 301.2 m/z

=1 — KO o — KO
= — WT = — WT
& B
= g z g
= .
'3 o
2 - 2 =
o o
o o 1
T T T T T T T T
3300 3350 3400 3450 3300 3350 3400 3450
Retention Time {seconds) Retention Time {seconds)
Extracted lon Chromatogram: 298.1 - 298.2 miz Extracted lon Chromatogram: 491.1 -491.3 m/z
=
- o
S — ko = — KO
— WT B — WT
o
S |
(=]
w0
8
=z 2 2 2
wr © o
c c
& 2
= 8 E
o
<5 i g i
D % m @%
=3 ;
o
N
o J | O =
T T T T T T T T T
3100 3150 3200 3250 3300 3350 2400 3450 3500
Retention Time {seconds) Retention Time {seconds)

Figure 3: Auto-generated extracted ion chromatograms for the top four differentially
regulated ions. Darkened lines indicate where the peaks were integrated for quantita-
tion. The top two plots show the primary and secondary isotopic peaks of an N-acyl
ethanolamine (NAE) with a 16 carbon acyl chain. The lower left plot shows the primary
isotopic peak of an NAE with a 16 carbon, monounsaturated acyl chain. The lower right
plot shows another potential FAAH substrate of unknown identity. Its peaks are not
aligned because it is showing a different elution profile than the majority of the other
metabolites. Compare it with peaks in the top two plots, which are also eluting at the
same time but are correctly aligned.

10

If the metlin argument is set to a numeric value, the report will include links
to the Metlin Metabolite Database (http://metlin.scripps.edu/) showing potential
metabolite identities. A positive value indicates the data was acquired in positive ion
mode and the neutral mass is calculated assuming all ions are M+H. A negative value
does the opposite. The value itself indicates the uncertainty in mass accuracy. For
instance, the first and third metabolites in the report produce the following URLs:

® http://metlin.scripps.edu/metabo_list.php?mass_min=299.04&mass_max=299.34

e http://metlin.scripps.edu/metabo_list.php?mass_min=297&mass_max=297.3

7 Selecting and Visualizing Peaks

It is also possible to generate extracted ion chromatograms for arbitrary peak groups
selected using various criteria. Here we generate EICs for two analytes eluting at different
times. They are shown using both unaligned and aligned retention times. The resulting
plots are shown in Figure

> gt <- groups(xset3)
> colnames(gt)

[1] "mzmed" "mzmin" '"mzmax" "rtmed" "rtmin" "rtmax" "npeaks" "KO"
[9] IIWTII

> groupidxl <- which(gt[, "rtmed"] > 2600 & gt[, "rtmed"] < 2700 &
+ gtl, "npeaks"] == 12)[1]

> groupidx2 <- which(gt[, "rtmed"] > 3600 & gt[, "rtmed"] < 3700 &
+ gtl, "npeaks"] == 12)[1]

> eiccor <- getEIC(xset3, groupidx = c(groupidxl, groupidx2))

kol5 kol6 kol8 kol9 ko2l ko22 wtlb wtl6 wtl8 wtl9 wt2l wt22
> eicraw <- getEIC(xset3, groupidx = c(groupidxl, groupidx2), rt = "raw")

kol5 kol16 kol8 kol9 ko2l ko22 wtlb wtl6 wtl8 wtl9 wt2l wt22

> plot(eicraw, xset3, groupidx = 1)
> plot(eicraw, xset3, groupidx = 2)
> plot(eiccor, xset3, groupidx = 1)
> plot(eiccor, xset3, groupidx = 2)

11

http://metlin.scripps.edu/
http://metlin.scripps.edu/metabo_list.php?mass_min=299.04&mass_max=299.34
http://metlin.scripps.edu/metabo_list.php?mass_min=297&mass_max=297.3

Extracted lon Chromatogram: 302 - 302.1 m/z

§ — KO
8 - — WT
(32}

2

%) —

c

i)

£ o
o
o — I \
o) A\
- / NN
o ?‘J“\i‘;wﬁwrif:"—“m\;// %A«—Q

T T T T
2550 2600 2650 2700
Retention Time (seconds)
Extracted lon Chromatogram: 302 - 302.1 m/z

S — KO
8 — WT
™

2

(%2} —

c

Q

£ o
o
S 4
o
—

. S S
o Y =
T T T T
2550 2600 2650 2700

Retention Time (seconds)

Intensity

Intensity

Extracted lon Chromatogram: 241.1 — 241.2 m/z

40000
|

20000
|

0
|

3600 3650 3700 3750

Retention Time (seconds)

Extracted lon Chromatogram: 241.1 — 241.2 m/z

40000
|

20000
|

0
|

3600 3650 3700 3750

Retention Time (seconds)

Figure 4: Unaligned (top) and aligned (bottom) extracted ion chromatograms from two
analytes eluting at 2624 and 3678 seconds. Darkened lines indicate where the peaks were
integrated for quantitation. A plot illustrating the retention time correction is shown in

Figure

12

References

Rolf Danielsson, Dan Bylund, and Karin E. Markides. Matched filtering with background
suppression for improved quality of base peak chromatograms and mass spectra in lig-
uid chromatography-mass spectrometry. Analytica Chimica Acta, 454:167-184, 2002.
URL http://dx.doi.org/10.1016/S0003-2670(01)01574-4.

A. Saghatelian, S. A. Trauger, E. J. Want, E. G. Hawkins, G. Siuzdak, and B. F. Cra-
vatt. Assignment of endogenous substrates to enzymes by global metabolite profiling.
Biochemistry, 43:14332-9, 2004. URL http://dx.doi.org/10.1021/bi0480335.

13

http://dx.doi.org/10.1016/S0003-2670(01)01574-4
http://dx.doi.org/10.1021/bi0480335

	Raw Data File Preparation
	Filtration and Peak Identification
	Matching Peaks Across Samples
	Retention Time Correction
	Filling in Missing Peak Data
	Analyzing and Visualizing Results
	Selecting and Visualizing Peaks

