aftyPLM: Methods for fitting probe level models to
Afty data

Ben Bolstad
bolstad@stat.berkeley.edu

October 28, 2003

Contents
1 Introduction 1
2 Fitting Probe level models 2
2.1 What is a probelevel model and what is a PLMset? 2
2.2 Using the software to fit probelevel models 2
2.2.1 Some examples 2
2.2.2 Some specific notes about specifying models in fitPLM)
2.2.3 Pre-processing)
3 Quality diagnostics 5
4 How long will it take to run the model fitting procedures? 7
4.1 Why is it so much slower than the rma function? 8

1 Introduction

This document describes an R IThaka and Gentleman (1996) package that has been
written to fit robust probe level models to affy data.

After starting R, the package should be loaded using this will load affyPLM as well
as the affy package and its dependencies.

2 Fitting Probe level models

2.1 What is a probelevel model and what is a PLMset?

A probelevel model is a linear model fit to probe data. In particular it is where we fit a
model with probe level and chip level parameters for each probeset. It is easy to arrange
the data for a probeset so that the rows are probes and the columns are chips. In this
case our probe level parameters are usually a factor variable for each probe. The chip
level parameters could be, a factor with a level for each array, factor variables grouping
the chips into treatment groups or perhaps some sort of covariate (pH, temperature).

A PLMset is an R object that holds the results of a fitted probelevel model. Some
of the items that are kept are parameter estimates, their standard errors and robust fit
weights.

2.2 Using the software to fit probelevel models
2.2.1 Some examples

The main function for fitting Probe level models is the function £itPLM. The most basic
way to call the function is to call passing an AffyBatch objects, this will fit a linear
model with an effect estimated for each chip.

> data(Dilution)
> Pset <- fitPLM(Dilution)

Background correcting
Normalizing
Fitting models

once you have a fitted model (this object is referred to as a PLMset object) you may view
the chip level parameter estimates and the corresponding standard errors using accessor
functions coefs and se respectively.

> coefs(Pset)[1:10,]

20A 20B 10A 10B
1000_at 7.712273 7.589297 7.604220 7.553855
1001_at 5.403363 5.246484 5.273807 5.361618
1002_f_at 6.001355 5.842824 5.875274 5.901889
1003_s_at 6.682987 6.369074 6.497950 6.402646
1004_at 6.265232 5.923743 6.150849 6.088767
1005_at 7.967263 7.947008 7.794284 7.874413
1006_at 5.039561 4.905057 5.009430 5.000676
1007_s_at 8.486376 8.370319 8.384898 8.341944
1008_f_at 7.602705 7.371384 7.741406 7.583359
1009_at 9.341384 9.374631 9.403627 9.334484

> se(Pset)[1:10,]

20A 20B 10A 10B
1000_at 0.03799718 0.03674898 0.03948395 0.03526662
1001_at 0.05850690 0.05890020 0.05918202 0.05606334
1002_f_at 0.06684831 0.06552934 0.06374240 0.06469234
1003_s_at 0.06114872 0.05960096 0.06161738 0.06088379
1004_at 0.05008092 0.04901174 0.04981303 0.04707207
1005_at 0.03306321 0.03260544 0.03615805 0.03332997
1006_at 0.06249281 0.05936004 0.05909235 0.05928336
1007_s_at 0.03226892 0.03122670 0.03342641 0.03164790
1008_f_at 0.03742417 0.03946399 0.03788032 0.03814021
1009_at 0.02842270 0.02861522 0.03055057 0.02848978

The £itPLM function also allows you to specify more complicated models. For in-
stance we may wish to fit a robust linear model with an effect for liver dilution level and
scanner (these are already defined in the phenoData slot of the AffyBatch, you can also
give names of objects in the current environment)

> Pset <- fitPLM(Dilution, model = PM ~ -1 + probes + liver + scanner,
+ normalize = FALSE, background = FALSE)
Fitting models
> coefs(Pset)[1:2,]
liver_10 liver_20 scanner_2

1000_at 8.432918 8.924804 -0.6891075
1001_at 7.228003 7.597236 -0.6156121

By default all variables are treated as factors. The ”-1 4 probes” is handled specially
by the ¢ code (currently the probe effects are constrained by a sum to zero constraint).
The first factor specified is unconstrained (in the above case that would be liver), all
of the following factors are constrained with the endpoint constraint (ie in our case
scanner).

It is also possible to fit models where some of the variables are treated as covariates
rather than as factors.

> logliver <- log2(c(20, 20, 10, 10))

> Pset <- fitPLM(Dilution, model = PM ~ -1 + probes + logliver +

+ scanner, normalize = FALSE, background = FALSE, variable.type = c(logliver = "c
No default type given. Assuming default variable type is factor

Fitting models

> coefs(Pset)[1:2,]

logliver scanner_1 scanner_2
1000_at 0.4918856 6.798910 6.109802
1001_at 0.3692328 6.001438 ©5.385826

We can also fit models with intercept parameters

> data(affybatch.example)
> Pset <- fitPLM(affybatch.example, model = PM ~ probes + samples,
+ normalize = FALSE, background = FALSE)

Fitting models
> coefs.const(Pset)[1:2]

A28102_at ABO0O114_at
7.039324 7.037748

> coefs(Pset)[1:2,]

20B 10A
A28102_at -0.03310827 -0.2537973
AB0O0O114_at 0.09955687 -0.1887458

and with different constraints on the parameters.

> data(affybatch.example)
> Pset <- fitPLM(affybatch.example, model = PM ~ probes + samples,
+ normalize = FALSE, background = FALSE, constraint.type = c(samples = "contr.sum

No default type given. Assuming default constraint type is contr.treatment
Fitting models

> coefs.const(Pset)[1:2]

A28102_at ABO0O114_at
6.943689 7.008018

> coefs(Pset)[1:2,]

20A 20B
A28102_at 0.09563518 0.0625269
AB0O00114_at 0.02972966 0.1292865

2.2.2 Some specific notes about specifying models in fitPLM

If you do not specify a model when using fitPLM then the default model is used. The
default model is PM -1 + probes + samples. The words probes and samples, for
probe and array effects, are reserved words in the specification of a model. The default
model will compute a parameter for each chip.

There are some specific rules that you must follow when specifying a model the first
is that the response should always be PM, next specify the intercept and probe effect
terms ie -1 + probes, then you may specify your chip level parameters. To put chip
level parameter all you need to do is put the name in your model as we have done in
the earlier examples with 1iver, scanner and logliver. These variables should either
be defined in the phenoData slot of the AffyBatch holding your data or as appropriate
vectors in your current R session, like the example with logliver above.

By default all parameters are treated as factor variables unless specified otherwise.
The first chip level factor is always left unconstrained (unless an intercept term has been
fitted), all the following chip level factors are by default constrained with the endpoint
constraint, unless you specify otherwise. Note that the probe parameters are by default
constrained using the sum to zero constraint, it is recommended you use this constraint,
but it is possible to use an endpoint constraint by using constraint.type

To specify that a chip level parameter should be treated as a covariate rather than a
factor, you use the variable.type parameter of £itPLM. The example using logliver
demonstrates this.

2.2.3 Pre-processing

By default the £itPLM function will preprocess the data using the RMA Irizarry et al.
(2003b),Irizarry et al. (2003a) preprocessing steps. In particular it uses the same back-
ground and normalization Bolstad et al. (2003) as the rma function of affy. It is possible
to turn off either of these steps by specifying that background and/or normalize are
FALSE.

3 Quality diagnostics

A pseudo chip image plot of the weights from the robust linear model fit is a useful
quality diagnostic.

> Pset <- fitPLM(Dilution)

Background correcting
Normalizing
Fitting models

> image (Pset, which = 2)

20B

Areas of low weight are greener, high weights (ie weight of 1) are light grey). The
image plot will allow you to detect artifacts on your chip.

Another diagnostic, particularly useful when you fit a model with an effect for each
array (the default model) is to boxplot the model standard errors (standardized across
probesets so each has median 1). This is done by using the boxplot function on a PLMset
object.

> boxplot (Pset)

° 8
o
(\!_
— 8 8 o
Te} ° g 8 o
— 8 B [
- 2]
o
\—!_
—
Yo}
S . '
— | | | |
1 1 1 1
1 \ . 1
o
— T
1 T | 1
1 ! 1 1
n 1 ! 1 1
[o) |
o o
& g ° °
o o
I

I I
X20A X20B X10A X10B

Another possible diagnostic is to compute M’s for each chip relative to a median
(pseudo)chip. This is handled by the command meval=FALSEm Mbox(Pset) which will
produce boxplots of the M values by array. A discordant chip may show on such a plot.

4 How long will it take to run the model fitting pro-
cedures?

It may take considerable time to run the fitPLM function. The length of time it is going
to take to run the model fitting procedure will depend on a number of factors including:

1. CPU speed
2. Memory size of the machine (RAM and VM)
3. Array type

4. Number of arrays

Component Specs

OS Red Hat Linux 8.0

kernel 2.4.20-ac2 with preemptive patch applied
processor AMD Athlon Thunderbird 1.2 Ghz
RAM 1 GB

Swap 6 GB

R R-1.7.0 (Development)

affy 1.1.8

affyPLM 0.4-14

Figure 1: Benchmarking Machine Specifications

5. Number of parameters in model

It is recommended that you run the fitPLM function only on machines with large
amounts of RAM. If you have a large number of arrays the number of parameters in
your model will have the greatest effect on runtime.

The £itPLM function has been tested using the system.time function. The specifi-
cations of the test machine are given in figure 1. The results are given in 2.

4.1 Why is it so much slower than the rma function?

The robust linear model fitting procedure uses IRLS (iteratively re-weighted least squares)
which is going to be inherently slower than the median polish algorithm. In addition
the £itPLM procedure produces standard error and weight estimates where as the rma
function focuses only on producing expression estimates. If your goal is to compute
expression estimates one for each probeset, each array it is probably better to use rma
function. When you wish to fit a more general model £itPLM is the more appropriate
choice.

References

B.M. Bolstad, R.A. Irizarry, M. Astrand, and T.P. Speed. A comparison of normaliza-
tion methods for high density oligonucleotide array data based on variance and bias.
Bioinformatics, 19(2):185-193, 2003. 5

Ross Thaka and Robert Gentleman. R: A language for data analysis and graphics. Journal
of Computational and Graphical Statistics, 5(3):299-314, 1996. 1

R. A. Irizarry, B. M. Bolstad, F. Collin, L. M. Cope, B. Hobbs, and T. P. Speed.
Summaries of affymetrix genechip probe level data. Nucleic Acids Research, 2003a.
To appear. 5

Number of Arrays Number of Chip level parameters Run time (seconds)

)) 85
10 10 176
10) 134
10 2 117
20 20 483
20 10 278
20) 223
20 2 200
30 30 1099
30 10 407
30) 322
30 2 272
40 40 2079
40 10 253
40) 422
40 2 399
50 50 6112 (about 102 Minutes)
20 10 745
20) 267
20 2 483

Figure 2: Runtimes in seconds

Rafael A. Irizarry, Bridget Hobbs, Francois Collin, Yasmin D. Beazer-Barclay, Kristen J.
Antonellis, Uwe Scherf, and Terence P. Speed. Exploration, normalization, and sum-
maries of high density oligonucleotide array probe level data. Biostatistics, 2003b. To
appear. 9

10

	Introduction
	Fitting Probe level models
	What is a probelevel model and what is a PLMset?
	Using the software to fit probelevel models
	Some examples
	Some specific notes about specifying models in fitPLM
	Pre-processing

	Quality diagnostics
	How long will it take to run the model fitting procedures?
	Why is it so much slower than the rma function?

