
232

Chapter 13

Network Pathologies

After correcting for packet filter errors (Chapter 10) and TCP behavior (Chapter 11), we
next turn to analyzing network behavior we might consider “pathological,” meaning unusual or
unexpected. When we present a series of packets to the network for delivery to a remote endpoint,
a number of things might happen. The network can:

(i) deliver them as we asked;

(ii) fail to deliver them at all (packet loss, cf. Chapter 15);

(iii) unduly delay them (packet delay, cf. Chapter 16), where “unduly” does not have a precise
definition, except perhaps “causing unnecessary retransmission”;

(iv) deliver them in a different order than sent (out-of-order delivery,x 13.1);

(v) deliver them more than once (packet replication,x 13.2);

(vi) deliver imperfect copies of them (packet corruption,x 13.3).

All but “deliver them as we asked” are in some sense unusual or unexpected, though to varying
degrees. The first two unusual behaviors are in fact often expected; we devote two subsequent
chapters to analyzing them in depth. The last three are less often expected, and we discuss them in
the remainder of this chapter. It is important thattcpanaly recognize these sorts of pathological
behaviors so that its subsequent analysis of packet loss and delay is not skewed by the presence of
pathologies. For example, it is very difficult to perform any sort of sound queueing delay analysis
in the presence of out-of-order delivery, since the latter indicates that a first-in-first-out (FIFO)
queueing model of the network does not apply.

13.1 Out-of-order delivery

While Internet routers almost always employ FIFO queueing, the packet-switched nature
of the network provides one common mechanism for reordering packets so that they arrive in a
different order than sent: whenever the routes taken by two packets differ, and the second packet
enjoys a sufficiently shorter transit time than the first, then reordering can occur [Mo92]. The

233

designers of TCP were well aware of this fact, and engineered TCP for resilience in the face of
out-of-order delivery, as well as the other pathologies enumerated above.

In the context of a transport protocol like TCP that sequences its data stream, we need
to make a distinction betweenout-of-orderdelivery, which is caused by the network, andout-of-
sequencedelivery, which is caused by the either the network (due to packet loss), or the transport
protocol (due to retransmission).

From a trace recorded at a TCP receiver, we cannot always distinguish between these two,
though two heuristics often work well. The first is checking whether the IP “id” field (x 10.3.5) of
two packets exhibits a small backward skip. Since each IP packet sent by a host typically increments
the field by one, a backward skip usually only occurs due to reordering. The second is to look at the
length of time between the arrival of the first (out-of-order or out-of-sequence) packet and that of
the second. If it is on the order of the round trip time (RTT) or higher, then it is likely that the first
packet is a retransmission. If it is quite short, then it is likely due to network reordering.

Since we have traces recorded at both ends of each TCP connection, and since we can
reliably pair departures recorded in one trace with arrivals in the other (x 10.5), we can more directly
detect network reordering.tcpanaly does this as follows.

13.1.1 Detecting out-of-order delivery

To analyze network reordering between endpointss and r, with corresponding packet
tracesTs andTr, we first check to see whether we have previously determined thatr's packet filter
suffers from resequencing (x 10.3.6), or if we were unable to pair the packets in the two traces due
to ambiguities (x 10.5). If either of these occurred, we skip further analysis. Otherwise, we scan the
packet arrivals inTr. For each arriving packetpi recorded in the trace, we check whether it was sent
after the last non-reordered packet,pN . If so, then we setpN pi, and proceed to the next arrival.

If, however,pi was sent beforepN , then we countpi's arrival as an instance of a network
reordering. So, for example, if a flight of ten packets all arrive in the order sent except the last
one arrives before all of the others, we consider this to reflect 9 reordered packets rather than 1.
Likewise, if the first arrives after all the others, and otherwise all arrivals are in order, we consider
this as reflecting 1 reordered packet. Using this definition emphasizes “late” arrivals rather than
“premature” arrivals. It turns out that counting late arrivals gives somewhat higher numbers than
counting premature arrivals, but the difference is not that great (� 25%).

tcpanaly further computes statistics on how many packets were sent betweenpi and
pN , how many of these arrived prior topN , and how much time elapsed between the arrival ofpi

and that ofpN . After analyzing packets sent froms to r, it then repeats the process for those sent
from r to s.

13.1.2 Results of out-of-order analysis

Out-of-order packet delivery proved much more prevalent in the Internet than we had
expected (prior to the routing pathology analysis inx 6). In N1, 36% of the traces included at
least one packet (data or ack) delivered out of order, while inN2, 12% did. Overall, 2.0% of all
of theN1 data packets and 0.61% of the acks arrived out of order, while inN2 the corresponding
figures fell to 0.26% and 0.10%. It is not surprising that data packets are significantly more often
reordered than acks, because they are frequently sent closer together than acknowledgements due

234

to ack-every-other acking policies (x 11.6.1), and so reordering for data packets requires less of a
difference in transit times than reordering for acks.

We shouldnot infer from the differences between reordering inN1 andN2 that reordering
became less likely over the course of 1995, because out-of-order delivery varies greatly from site
to site. For example, 15% of the data packets sent byucol duringN1 arrived out of order, far ex-
ceeding the average for the entire dataset. Likewise, reordering is highly asymmetric. For example,
only 1.5% of the data packets sentto ucol duringN1 arrived out of order. Furthermore, while for
some sites out-of-order delivery of packets sentfrom the site strongly correlated with out-of-order
delivery of those sentto the site, for other sites (such asucol andwustl) the two directions were
uncorrelated. This means a TCP cannot soundly infer whether the packets it sends are likely to be
reordered, based on observations of the acks it receives. This is unfortunate, because, if a TCP could
make this assumption, then it could more accurately determine the correct duplicate ack threshold
to use for fast retransmission (seex 13.1.3 below).

The site-to-site variation in reordering directly matches our findings concerning route
flutter (x 6.6). In that analysis, we identified two sites as particularly exhibiting flutter,ucol and
wustl . For the part ofN1 during whichwustl exhibited route flutter, 24% of all of the data packets
it sent arrived out of order, a rather stunning degree of reordering. If we eliminateucol andwustl

from the analysis, then the proportion of all of theN1 data packets delivered out-of-order falls by
a factor of two. Clearly, these two sites heavily dominateN1 reordering. Finally, we note that, in
N2, data packets sent byucol were reordered only 25 times out of nearly 100,000 sent, though
3.3% of the data packets sentto ucol arrived out of order, dramatizing how, over long time scales,
site-specific effects can completely change.

Thus, we should not interpret the prevalence of out-of-order delivery summarized above
as giving any sort of representative numbers for the Internet, but should instead form the rule of
thumb: Internet paths aresometimessubject to a high incidence of reordering, but the effect is
strongly site-dependent, and highly correlated with route fluttering.

The extremes of out-of-order delivery are interesting because they represent situations of
network behavior far from normal. Such true pathologies sometimes illuminate unforeseen interac-
tions between transport protocols and the network.

Figure 13.1 shows the single worst trace in our data in terms of out-of-order delivery,
from wustl to nrao in N1. 74 packets out of 205 sent arrived out-of-order, a proportion of 36%
(the worst inN2 was 28%). The plot includes a line linking adjacent packets to highlight the
effect. Every time the line heads downward to the right it indicates an out-of-order delivery. It is
interesting to note that while this connection endured major reordering, it did not sufferanypacket
loss, and only one needless retransmission, that due to the Solaris TCP's insufficiently large initial
retransmission timeout (RTO), discussed inx 11.5.10. In particular, the timerwas able to cope
with significant fluctuations in round-trip time. This may appear surprising in light of the problems
previously uncovered with the Solaris timer adaption algorithm (x 11.5.1). However, out-of-order
packets elicitduplicateacks from the network, corresponding to the temporarily missing packets.
If the RTO adaptation only uses timings based on acks that advance the window, then it will tend to
see timings reflecting the longer of the two routes over which the packets travel. This is, fortunately,
exactly the right RTT timing to which one should adapt the RTO, since it represents the worst-case
on how long it can take for a packet to traverse the network and be acknowledged.

While we found earlier in this section that data packets are significantly more likely to be

235

Time

Se
que

nce
 #

1.2 1.4 1.6 1.8 2.0 2.2 2.4

200
00

300
00

400
00

500
00

600
00

Figure 13.1: Sequence plot showing a connection with 36% of data packets delivered out-of-order

reordered than acks, this does not necessarily apply to the extremes of behavior. Indeed, inN1 we
observed 12 connections in which 20% or more of the acks were reordered, with an extreme value
of 33% reordered. (InN2, the extreme value was 13%.)

Figure 13.2 shows thelargestout-of-order gap we found. In thisN2 trace fromadv to
harv , all the packets shown in the plot were sent in sequence. After data packet 61,953 arrives, the
next arrival is 89,601, sent 54 packets later!

While at first blush it might appear that the reordering in Figure 13.2 is due to a routing
change at sequencing 89,601, the evidence indicates it is in fact due to a different effect. Figure 13.3
shows a similar massive reordering event. Here, however, the higher-sequence number packets
nearly lie on a line. Indeed, fitting a line to them yields a data rate of a little over 170 Kbyte/sec.
This rate is a compelling value because it agrees with a T1 bottleneck (x 14.7.1). Furthermore, it
agrees with the remainder of the trace, which is shown in its entirety in Figure 13.4. Indeed, from
that figure it is clear both that the slope of the packets deliveredlate in Figure 13.3 is aberrant,
and that the late packets were abnormally delayed, rather than the high-sequence packets arriving
early due to a routing change. Finally, the slope of the late packets, if we factor in the number of
high-sequence packets arriving in their midst, is just under 1 Mbyte/sec, consistent with an Ethernet
bottleneck.

We analyze this behavior as follows. A router quite close to the receiver (such that the
bottleneck bandwidth between the router and the receiver corresponds to Ethernet speed) stopped
forwarding packets just as 72,705 arrived. The most likely explanation for its 110 msec lull is that it
had a routing update to process, as these can take considerable time and many routers cease forward-
ing packets during the update [FJ94]. After the processing finished, which occurred just between
the arrival of 91,137 and 91,649, the router began forwarding packets normally again. Thus, the
higher-sequence packets, which arrived at the router at T1 speeds since that is the upstream bottle-
neck, continued through the router unaltered. Meanwhile, the router had queued some 35 packets

236

Time

Se
que

nce
 #

0.64 0.66 0.68 0.70 0.72 0.74600
00

700
00

800
00

900
00

100
000

Figure 13.2: Sequence plot showing a connection with an out-of-order gap of 54 packets

Time

Se
que

nce
 #

1.72 1.73 1.74 1.75 1.76 1.77 1.78

750
00

800
00

850
00

900
00

950
00

100
000

Figure 13.3: Out-of-order delivery with two distinct slopes

237

Time

Se
que

nce
 #

0.0 0.5 1.0 1.5

0
200

00
400

00
600

00
800

00
100

000

Figure 13.4: Sequence plot of entire connection shown in previous figure

while it processed the update, and these were now finally forwarded whenever the router had time
(was not processing a newly arriving packet). Thus, they went out as quickly as possible, namely at
Ethernet speed.

We observed this pattern a number of times in our data—not frequent enough to conclude
that it is anything but a pathology, but often enough to suggest that significant momentary increases
in networking delay can be due to effects different from both queueing and route changes; most
likely due to router “pauses.”

Striking reordering is not confined to data packets. Figure 13.5 shows a SYN-ack packet,
still advertising a (relatively) small initial window (shown in the plot by the circle above the ack),
arriving a full second after it was sent, after 19 subsequent acks have already arrived. Even more
striking is the trace shown in Figure 13.6. Here, two acks, the first for 47,617 and the second for
48,129, arrive a fulltwelveseconds after they were sent (and long after the packets they acknow-
ledged were needlessly retransmitted). Just where in the network they spent those 12 seconds, and
what led to their eventual release, remains a mystery! One clue, however, is that they arrived with
a remaining TTL of 40, while all the other acks had TTL's of 41 remaining. They may have taken
a different route through the network. This is not certain, however, because the router that detained
them may instead have additionally decremented the TTL field to reflect the long delay (x 4.2.1).

13.1.3 Impact of reordering

While out-of-order delivery can violate one's assumptions about how the network
works—in particular, the abstraction that the network is well-modeled as a series of FIFO queue-
ing servers—it often is no more than a nuisance in terms of its impact on transport protocols such
as TCP. For example, Figure 13.1 above shows the trace that endured the largest proportion of
out-of-order packet delivery of the more than 20,000 traces we studied; yet it did not suffer any

238

Time

Se
que

nce
 #

2.0 2.2 2.4 2.6 2.8 3.0 3.2

0
100

00
200

00
300

00
400

00

Figure 13.5: Sequence plot of ack delivered out-of-order

Time

Se
que

nce
 #

20 25 30

450
00

500
00

550
00

600
00

650
00

700
00

Figure 13.6: Sequence plot of two acks delivered out-of-order and very late

239

retransmissions, and in fact had its performance limited by the small advertised receiver window,
rather than by any effects from the reordering.

Where reordering makes a difference, however, is when one wishes to make a quick de-
cision whether or not to retransmit an unacknowledged packet.1 In particular, if the network never
exhibited reordering, then, as soon as the receiver observed the arrival of a packet that created a
sequence “hole,” it would know that the expected in-sequence packet had been dropped, and could
signal this information to the sender to call for prompt retransmission. Because of reordering, how-
ever, the receiver doesnotknow whether the packet in fact was dropped; it may instead have simply
been reordered and will arrive shortly. In this latter case, the receiver shouldnot call for retransmis-
sion, as retransmission is unnecessary and will thus needlessly consume network resources.

TCP addresses this problem as follows. When a TCP receives a packet above a sequence
hole, it may generate a dup ack for the sequence hole. (Indeed, all TCPs in our study except SunOS
generate such acks; seex 11.6.2.) If a TCP receives a certain threshold numberNd of dup acks, it
then can enter afast retransmitphase (x 9.2.7). Presently,Nd = 3, a value chosen so that “false”
dup acks generated by out-of-order delivery are unlikely to lead to spurious retransmissions.

The value ofNd = 3 was chosen primarily to assure that the threshold was conservative
and needless retransmission avoided. Large-scale measurement studies were not available to further
guide the selection of the threshold. In this section we examine whether the fast retransmit mech-
anism could be improved in two different ways: by delaying the generation of dup acks in order
to better disambiguate packet loss from out-of-order delivery, and by choosing a different threshold
value to improve the balance between increasing opportunities to retransmit quickly, and avoiding
unneeded retransmissions due to out-of-order delivery.

We first look at packet reordering time scales to determine whether a TCP could profitably
wait a short period of time upon receiving a packet above a sequence hole before generating a dup
ack. We only look at the time scales of data packet reorderings, since ack reordering time scales
do not affect the fast retransmission process. Indeed, since TCP acks are cumulative, out-of-order
delivery of acks has essentially no effect on the performance of a TCP connection.

Figure 13.7 shows the distribution of the amount of time between an out-of-order data
packet arrival and the later arrival of the last packet sent before it. The plot is log-scaled and
thus reflects a wide range in reordering times. The distribution exhibits several artifacts meriting
investigation. For example, the central step in the distribution occurring around 50% probability lies
at exactly 10 msec, and corresponds to a common clock resolution (x 12.4.2). Likewise, the smaller
step a bit to the right of it is at 20 msec, another common resolution.

The skip at the upper right of the plot is more interesting, as it is not a measurement
artifact per se. It lies right at 81 msec, which initially seems a strange value. However, one of the
sites in our study was linked to the Internet duringN1 via a 56 Kbit/sec link (connix). Using the
methodology developed in Chapter 14, we found this site's bottleneck bandwidth was right around
6,320 user data bytes/sec. If a remote site is sending 512 byte packets, and if they are reordered
upstream from the 56 Kbit/sec bottleneck link, then the packets can arriveno closerthan:

512 bytes
6; 320 bytes/sec

= 81:0 msec:

1It can also make a significant difference for a TCP receiver that does not retain above-sequence data, as we saw for
Trumpet/Winsock inx 11.7.3. Such a TCP will force retransmission of every packet delivered out of order.

240

Delivery Gap (sec)

y

10^-6 10^-4 10^-2 10^0

0.0
0.2

0.4
0.6

0.8
1.0

Figure 13.7: Distribution of out-of-order delivery interval forN1 data packets

Thus, we see that reordering can have associated with it aminimumtime which can be quite large.
This effect, however, will diminish with time as faster links replace slower ones.

Figure 13.8 shows the same distribution forN2 (solid), withN1 added (dotted) for com-
parison. It likewise exhibits timer resolution steps and the 56 Kbit/sec minimum reordering time, as
well as a slightly smaller minimum time of 70 msec, corresponding to 64 Kbit/sec links delivering
about 7,300 bytes/sec. The most noteworthy aspect of the plot, however, is the strong shift towards
lower values. The median of theN1 intervals was 10 msec, and the geometric mean 9 msec, while
forN2 these dropped by more than a factor of two, both to around 4 msec. We suspect the change is
due to the deployment of faster links within the Internet infrastructure.2 If so, then again we expect
reordering times to diminish as the infrastructure is further upgraded.

Even with theN1 intervals, a strategy of waiting 20 msec would identify 70% of the
out-of-order deliveries. For theN2 intervals, the same proportion can be achieved waiting 8 msec.

However, a more basic question is: are false fast retransmit signals due to out-of-order
deliveries actually a problem? To find an answer, we added totcpanaly analysis of duplicate
acks3 as follows. For each trace pair it analyzes, it inspects each series of duplicate acks arriving at
the sending TCP and classifies the sequence as one of:

good: indeed due to a missing packet requiring retransmission;

2It is not due to better clock resolutions inN2 compared to those inN1. If we eliminate the 9–11 msec and 19–
21 msec spikes in the distributions shown in Figure 13.7 and Figure 13.8, we still find a virtually identical shift between
the two datasets.

3tcpanaly only considers an ack as a duplicate of the preceding ack if it(i) acknowledges the same sequence
number;(ii) contains the same offered window; and(iii) is a “pure” ack packet, one not containing any data. This test
can still mistake a series of acknowledgements for “zero window” probes as triggering a fast retransmit. However, such
probes were exceedingly rare in our traces: only 6 instances inN1, and none inN2. Of the 6 inN1, only one persisted
long enough to elicit more than a single ack in reply (it elicited two such acks).

241

Delivery Gap (sec)

y

0.00001 0.00100 0.10000

0.2
0.4

0.6
0.8

1.0

Figure 13.8: Distribution of data packet out-of-order delivery interval forN1 (dotted) andN2 (solid)

bad: actually due to a temporary sequence hole caused by out-of-order delivery; or,

top: corresponding to the top sequence number sent so far.

The termsgood and bad reflect the perspective of using the series of duplicate acks as a signal
for fast retransmission.top series reflect situations in which the TCP has already needlessly re-
transmitted. When a needless retransmission arrives at the receiver, because it is below-sequence it
will immediately trigger the generation of a duplicate ack (x 9.2.7). top series can lead to further
needless retransmission (thus perpetuating the cycle), but the TCP can employ a simple heuristic to
avoid these, discussed below.

In addition to classifying each duplicate ack series,tcpanaly assigns a lengthD corre-
sponding to the number of duplicate acks in the series. Forgood duplicate ack series,tcpanaly

also associates asavingsS indicating how much time would have been saved if the fast retransmit
thresholdNd had been equal toD, and thus the series had led to retransmission. ForD > 3, S is
often negative, because in fact the packet was already transmitted upon receipt of the third duplicate,
rather than waiting for allD packets.

Forbad duplicate ack series,tcpanaly associates awaiting timeW , indicating how long
the TCP would have had to wait in order to recognize that the sequence hole was due to out-of-order
delivery rather than to packet loss.

When considering a refinement to the fast retransmission mechanism, our interest lies
in the resulting ratio ofgood to bad, Rg:b, which is controlled by bothNd andfW , the minimum
amount of time that the receiving TCP would wait prior to generating a duplicate; and the mean
ensuing savingsS of how much more quickly the TCP can retransmit as a result of the refinement.

We first consider the current state of affairs, in whichNd = 3 duplicates andfW = 0,
namely duplicate acks are generated immediately as called for. InN1 we findRg:b = 22, and in
N2 Rg:b = 300! (That is, inN1, each incorrect fast retransmit was countered, overall, by 22 correct

242

fast retransmits, and, inN2, by 300 correct retransmits.) The order of magnitude improvement
betweenN1 andN2 is likely mostly due to the use inN2 of bigger windows (x 9.3), and hence
much more opportunity forgood duplicate ack series. (We do not evaluate the savingsS of the
current mechanism, because it is what we are measuring against.)

Because the current scheme works well, we do not investigate increasing the threshold in
detail. We note, however, thatNd = 4 improvesRg:b by about a factor of 2.5, but diminishes the
number of fast retransmit opportunities by about 30%, a significant loss.

We might instead consider whether the threshold can be safely lowered from 3 to 2. For
Nd = 2, we gain about 65–70% more fast retransmit opportunities (i.e.,gooddup ack sequences), a
hefty improvement. Furthermore, the mean savingsS for these new opportunities is 1.65–1.73 sec,
because we are avoiding retransmission timeouts. The cost, however, is thatRg:b falls by about a
factor of three, in bothN1 andN2.

If, however, the receiving TCP waitedfW = 20 msec before generating a second dup
(avoiding doing so if the missing packet arrived, and immediately doing so if another out-of-order
arrival called for a third dup), then, forN1, Rg:b only falls from 22 to 15, while forN2 it does not
fall at all.

Thus, the simplest change of just loweringNd from 3 to 2 gains a large proportion of
quicker retransmissions, but at the cost of three times as many unnecessary retransmissions. A com-
panion change to TCPs to delay forfW = 20 msec when sending a second duplicate ack ameliorates
almost all of the drawbacks of loweringNd to 2. However, there are considerable deployment differ-
ences between these two modifications. The first is a one-line change in most TCP implementations
and garners benefits (and drawbacks) even if only thesendingTCP has been modified and it is
communicating with an unmodified receiving TCP. The receiving TCP change involves additional
timer management and so is not necessarily a simple change, and it only garners benefit ifboth the
sending and receiving TCP have been modified (it does not do much harm if the sender has not,
however). But lowering the retransmit threshold to two duplicate acks is only a sound changeif de-
ployed simultaneously with thefW = 20 msec change. Such widespread simultaneous deployment,
however, is virtually infeasible due to the size of the Internet. Therefore, we would have to live with
partial deployment for a lengthy period of time, and, for that time, significantly more unneeded
retransmissions. In summary, if we require changing both the sender and the receiver, then, while
the change is appealing, it is likely impractical considering the size of the Internet's installed base
of TCP implementations.

Another approach would be to modifysendersto wait 20 msec before responding toNd =

2 duplicate acks with a fast retransmission. This pause would then generally allow, in the case of
out-of-order delivery, sufficient time for another ack to arrive indicating that the temporarily missing
data packet was successfully delivered. We do not evaluate this approach in detail here, but note
that it has several drawbacks. First, it requires additional timer management, which, as mentioned
above, is not always a simple change. Second, delay variations along the return path taken by the
acks might require a significantly larger value offW to avoid unnecessary retransmissions. Third, if
the ack return path suffers from loss, then the “clarifying” ack that identifies the first two dups as
due to a reordering event might be lost, again leading to unnecessary retransmissions.4

4We show inx 15.2 that losses along the forward and reverse directions of an Internet path are, overall, nearly uncor-
related, so we could quite plausibly have a situation in which “clarifying” acks are dropped, but there is no loss along the
forward path, and hence no retransmission necessary.

243

We note that the TCPselective acknowledgement(“SACK”) option, now pending stan-
dardization, also holds promise for honing TCP retransmission [MMFR96]. SACK provides suf-
ficiently fine-grained acknowledgement information that the sending TCP can generally tell which
packets require retransmission and which have safely arrived (x 15.6). To gain any benefits from
SACK, however, requires that both the sender and the receiver support the option, so the deployment
problems are similar to those discussed above. Furthermore, use of SACK aids a TCP in determin-
ing what to retransmit, but notwhento retransmit. Because these considerations are orthogonal,
investigating the effects of loweringNd to 2 merits investigation, even in face of impending deploy-
ment of SACK.

Perhaps needless to say, loweringNd all the way to a single dup ack is a disaster.Rg:b

falls by a factor of 10 from its value forNd = 3. ForN2, using a 20 msec delay before generating
a dup ack wins back most of the loss (changing the factor to 1.5), but forN1, it still falls by a
factor of 3.

The final category of duplicate ack series analyzed bytcpanaly is top. These are quite
common, due primarily to broken retransmission timers (x 11.5.10), but also due to imperfect re-
covery during retransmission. Atop series occurs when the original ack (of which all the others
are then duplicates) had acknowledgedall of the outstanding data (hence, thetop of the sequence
space). When this occurs, subsequent duplicates for that ack arealwaysdue to an unnecessary re-
transmission arriving at the receiving TCP, until the sending TCP sends new data. Even when it
does, subsequent duplicates are still due to redundant packets until at least a round-trip time has
elapsed after sending the new data.

Figure 13.9 shows a retransmission event leading to atop series. The sender has opened
a large window of about 50 packets when data packet 45,025 is lost, as are the 17 packets following
it. A river of dup acks pours in as 54,673 and above successfully arrive. The third dup triggers fast
retransmit, but since nearly half the window was lost, the many dup acks are not enough to induce
fast recovery, so no more packets are in flight, and hence no more dups arrive signaling that 45,561
was also lost. Thus, 45,561 times out, and a slow-start sequence begins atT = 2:46.

The first four flights of this sequence all work to fill the large sequence hole due to the
18 dropped packets, but the fifth flight, considerably larger than the fourth, transmits almost entirely
redundant data already safely received at the other end. The arrival of these unnecessary packets
then causes another sequence of duplicate acks. Figure 13.10 shows the resultingtop series. The
first ack for 67,001 is not a dup but instead indicates that the sequence hole has been filled.It also
advances the window, so 13 new packets are sent, beginning with 67,537. Shortly after, the first of
the dups arrive, and, after three, 67,537 is sentagain due to fast retransmission, and more packets
are sent on the additional dups due to fast recovery. Since fast recovery is enabled, however, no
more spurious retransmissions result, ending the cycle, and the connection proceeds normally once
fast recovery terminates about timeT = 2:85.

Top series are about 10 times rarer thangoodseries, but that still makes them the cause
of between 2 and 15 times as many unnecessary retransmissions thanbad series due to out-of-order
delivery. They are, however, preventable, using the following heuristic. Whenever a TCP receives
an ack, it notes whether the ack covers all of the data sent so far. If so, it then ignores any duplicates
it receives for the ack, otherwise it acts on them in accordance with the usual fast retransmission
mechanism.

The only drawback to this method is if the TCP sends a flight of new data after receiving

244

Time

Se
qu

en
ce

 #

1.0 1.5 2.0 2.5 3.0

30
00

0
40

00
0

50
00

0
60

00
0

70
00

0
80

00
0

90
00

0

Figure 13.9: Sequence plot showing retransmission event leading totop duplicate ack series

245

Time

Se
que

nce
 #

2.78 2.80 2.82 2.84 2.86

660
00

680
00

700
00

720
00

740
00

760
00

780
00

Figure 13.10: Enlargement oftop duplicate ack series

the first top ack, and the first packet of the flight is lost, then the subsequent dups generated by the
arrival of the remainder of the flight will fail to trigger fast retransmission for the missing packet,
and so the connection will stall pending a timeout retransmission. This deficiency can be addressed
by allowing the TCP to honor dup acks if they arrive at least one round-trip time (RTT) after the
TCP sent new data. This requires, however, that the TCP maintain an estimate of the minimal RTT,
which most present implementations do not. (The retransmission timeout is based on an estimate
of the maximumRTT.) Use of SACK will also eliminatetop dup ack series, since SACK allows
the sender to disambiguate between dups due to needless retransmission and dups due to a genuine
missing packet. But the heuristic we propose has the attractive benefit of not requiring that both the
sender and receiver implement it. It works fine if just the sender uses it.

13.2 Packet replication

In this section we look atpacket replication, meaning instances in which the network
delivers multiple copies of the same single packet. While with out-of-order delivery we can readily
picture a causal mechanism, namely uneven path delays, it is difficult to see how the network can
replicate a packet given to it. Our imaginations notwithstanding, it does occur, albeit very rarely.
We suspect the mechanism may involve links whose link-level technology includes a notion of
retransmission, and for which the sender of a packet on the link incorrectly believes the packet was
not successfully received, so it sends the packet again. A related mechanism, pointed out by Van
Jacobson, would occur on a token ring network if the sender's network interface sometimes failed
to promptly drain the packet from the ring, such that it made multiple circuits.

In N1, we observed only one instance of packet replication. Figure 13.11 shows the
corresponding sequence plot, recorded at the data sender. Two acks, one for 43,009 and one for
44,033, arrive atT = 1:86. They then arrive again, and again, and again, for a total of 9 pairs of

246

Time

Se
que

nce
 #

1.6 1.8 2.0 2.2 2.4

340
00

360
00

380
00

400
00

420
00

440
00

460
00

480
00

Figure 13.11: Two acks replicated 8 times each

arrivals, each pair coming 32 msec after the last. Since the replication involvestwo different acks,
the multiple arrivals do not constitute a duplicate ack series, and so no fast retransmission occurs
(x 9.2.7). The fact that two packets were together replicated does not fit with the explanations offered
above for how a single packet could be replicated, since link-layer effects would only replicate one
packet at a time. Finally, the replication in Figure 13.11 was accompanied by a routing change along
the path from the data sender to the receiver. It seems likely the two events were somehow related.

In N2, however, we observed 65 instances of the network infrastructure replicating a
packet. Figure 13.12 shows the most striking of these, a single data packet 78,337 being replicated
22 times by the network (two extended blurs in the plot). The receiving TCP dutifully generates
dup acks for each additional arrival, though it experiences a processing lull of about 7 msec while
doing so.

All of the packet replications inN2 were of a single packet, indicating perhaps a different
mechanism than that forN1's lone replication event. Several sites dominated theN2 replication
events: in particular, the two Trondheim sites,sintef1 andsintef2 , accounted for half of the
events (almost all of these involvingsintef1). Of the remainder, the two British sites,ucl and
ukc , accounted for nearly half again. But after eliminating all of these, we still observed replication
events among connections between 7 different sites, so the effect is not completely isolated to one
or two locations.

Surprisingly, packets can also be replicated at the sender. Figure 13.13 shows an example.
Here, the ack arriving in the lower left corner of the plot has liberated 19 new packets (the receiver
is a Solaris system and the ack reflects the Solaris slow-start acking strategy discussed inx 11.6.1).
The packets are sent at nearly Ethernet speed, but, 4 msec after it was first sent, packet 91,649
shows up again. The second occurrence is a replication and not a temporary routing loop, because

247

Time

Se
que

nce
 #

1.220 1.225 1.230 1.235 1.240 1.245

780
00

785
00

790
00

795
00

Figure 13.12: Data packet replicated 22 times

Time

Se
que

nce
 #

1.580 1.585 1.590 1.595

880
00

900
00

920
00

940
00

960
00

Figure 13.13: Data packet replicated at sender

248

both copies show up at the receiver.5 Furthermore, the second copy had a TTL field one less than
that in the first copy, indicating that the replicant did indeed take a slight detour before showing up
again on the local link. While there were no sender-replicated packets inN1, N2 had 17 instances,
12 involving sintef1 and the remainder involvingconnix . For both sites, the replicated packet
was always out-bound, sometimes an ack and sometimes a data packet.

13.3 Packet corruption

The final pathology we look at ispacket corruption, in which the network delivers to the
receiver an imperfect copy of the original packet. Packet corruption is a well-known problem and
a great deal of effort has been devoted to coding schemes and checksums in order to detect and
correct for transmission errors. For TCP/IP, the IP header includes a 16 bitheaderchecksum that
is computed over the IP header bytes. It doesnot include the TCP header or the TCP data bytes.
It is supposed to be checked at each forwarding hop (though it is not clear whether all high-speed
routers do so). If the checksum fails to match the header, the packet is discarded, because it cannot
be reliably forwarded (who knows what is the true destination address?).

TCP packets are further protected by a 16 bit checksum for the entire data contents of
the packet, as well as the TCP header and part of the IP header. This checksum is intended as an
end-to-endchecksum, the merits of which are persuasively argued in [SRC84].

We discussedtcpanaly 's checksum analysis inx 11.2 andx 11.4.2. One issue we men-
tioned was the fact that whattcpanaly is actually detecting are packets ignored by the TCP re-
ceiver, which we then presume are due to checksum failures. An important point is that packets can
be ignored due to other effects, such as the kernel having exhausted its available buffer space for
keeping the packet until the TCP receiver can process it, or the network card dropping the incoming
packet for the same sort of reason. In particular, the vantage-point problem (x 10.4) can render the
distinction between a checksum failure and other problems difficult to make.

We address this difficulty by observing that packet filters running on the same host as the
TCP receivers should only see packets also seen by the receiver: if the network interface or kernel
lacked resources for delivering the packet to the TCP, then the filter should not have received a copy,
either.6 Packet filters running on separate hosts, on the other hand,will see both kinds of receiver
losses, those due to checksum failures and those due to other causes. Thus, if a significant portion
of tcpanaly 's inferred checksum errors are actually packets discarded for a different reason, then
we should find the sites with separate packet filter hosts more likely to detect purported checksum
errors than those with the packet filter running on the same host as the TCP.

We do not, however, find much of a disparity: inN2, after eliminatinglbli (see below),
we find that 3.3% of the traces recorded by separate-host packet filters included a purported check-
sum error, while about 3.0% of those recorded by same-host filters did. Accordingly, we argue that
the vast majority of checksum errors inferred bytcpanaly are indeed due to packet corruption.

We now present analysis based on this assumption. InN1, tcpanaly flagged 75 traces
(2.9%) as exhibiting a total of 105 checksum errors, with an overall proportion of 0.02% of the

5We verified that both copies include the same value in the IP “id” field.
6It might be possible that, on some systems, the kernel may find it has sufficient resources to give a copy of a packet

to the packet filter, but not a separate copy to the TCP receiver. We would expect, though, that this sort of borderline case
would manifest itself only rarely.

249

received packets corrupted by checksum errors. InN2, however, the figures climbed to 748 traces
(4.4%) exhibiting 1,982 checksum errors, for an overall proportion of 0.06% of the received packets.

The apparent trend, however, is not significant. It is all due to an increase in the checksum
errors seen for data packets received bylbli . In N1, only 4% of the traces with data checksum
errors were tolbli as the receiver. InN2, however, 33% were. Furthermore,lbli in N2 was
particularly prone to checksum bursts like those shown in Figure 11.3. If we eliminate from our
analysis thoseN2 traces withlbli as the receiver, then the proportion of traces with errors falls
to 3.0% and the proportion of received packets falls to 0.02%, essentially the same as inN1. After
doing so, no particular site stands out as being exceptionally plagued by checksum errors. Thus, the
evidence is good that, as a rule of thumb, the proportion of Internet data packets corrupted in transit
is around 1 in 5,000.7

A corruption rate of 1 packet in 5,000 is low but certainly not negligible, because TCP
protects its data with a mere 16-bit checksum. Consequently, on average one bad packet out of
65,536 will be erroneously accepted by the receiving TCP, resulting inundetected data corruption.
If the rates in our study are typical, which seems plausible (but see below), then about one in every
300 million Internet packets is accepted with corruption. As the Internet carries far more data than
300 million packets per day,8 it appears likely that bad data is being accepted by a number of TCPs
around the Internet every day.9 Thus, these statistics argue that TCP's 16-bit checksum is no longer
adequate, if the goal is that globally in the Internet there are very few corrupted packets accepted by
TCP implementations.

We noted above thatlbli showed a strong increase in the prevalence of corrupted data
packets received betweenN1 andN2. Sincelbli 's Internet link is via an ISDN line, it appears
quite likely that the change is due to an increase in noise on the ISDN channels. That the errors most
likely occur on an ISDN link also suggests why we observe bursts of checksum errors. The link in
question uses SLIP compression (CSLIP) in order to transmit the TCP/IP header information very
succinctly over the link [Jac90]. CSLIP works by encoding the header as differences with respect to
the header of the connection's previous packet. Thus, if the link suffers an undetected error, not only
will the current packet be corrupted, but so will every subsequent packet whose header is expressed
in terms of differences with respect to the current packet's corrupted header. CSLIP consequently
produces a stream of corrupted packets until the compression is reset (which happens when the
originally-corrupted packet is retransmitted). This is exactly the behavior seen in Figure 11.3—the
errors stop as soon as the first corrupted packet is retransmitted. (We frequently see this pattern with
checksum bursts.) This means that, at thephysical layer, probably only one error occurs, but the
use of compression magnifies this error and turns it into a burst. From a networking perspective,
this is quite unfortunate, as it results in a spate of what should have been unneeded retransmissions.
The correct fix for this problem is probably to ensure that the link layer uses a strong checksum, so
it can discard corrupted packets without even presenting them to CSLIP for decompression; and to

7If we assume single-bit uniformly-distributed errors, along with 512 byte data packets having 40 bytes of TCP/IP
header, then this corruption rate corresponds to a Bit Error Rate of about4:5 � 10�8.

8A 37 minute trace of the busy Internet exchange point FIX -WESTcaptured on June 21, 1995, logged slightly under
1,000,000 packets per minute [http://www.nlanr.net/Flowsresearch/fixstats.21.6.html].

9This analysis assumes that corruptions result in uniformly-distributed checksum alterations. See [PHS95] for a more
detailed analysis of data corruption checksum patterns, which can make the failure rate for accepting bad data significantly
higher. In general, our data does not enable us to check for these other patterns, since our traces do not include packet
contents.

250

ensure that CSLIP can resynchronize its compression state in the presence of such discards.
Finally, we note that the data checksum error rate of 0.02% of the packets is much higher

than that found for pure acks (x 11.2). For pure acks, we found only 1 corruption out of 313,730 acks
in N1, and 26 out of 1,839,824 acks inN2. Of the 26 inN2, however, 25 were received bylbli ,
which we removed from our analysis above since it showed a clear prevalence of checksum errors
far exceeding any other site. We thus need to reconcile an error rate of2 � 10�4 for data packets
versus one of between3 � 10�6 (N1) and 6 � 10�7 (N2) for pure acks, a ratio of between 60:1
and 300:1.

A first question to address is whether part of the difference is due to a tendency for data
packet corruptions to come in bursts, as discussed above. However, other thanlbli , this is not the
case—for other sites, corruption events were usually confined to isolated packets.

If we assume that corruption is due to uniformly distributed single bit errors, then a
packet's likelihood of corruption will be directly proportional to the packet's size. Since pure acks
have 40 bytes of TCP/IP header while data packets in our study were usually about 14 times larger
(though sometimes as much as 37 times), the difference in size alone does not appear to reconcile
the discrepancy.

Note, however, that the IP header has its own checksum, which is supposedly verified at
each hop taken by a packet. We add the caveat “supposedly” because it is not clear whether all high-
speed routers verify checksums, a potentially costly packet-forwarding step as it requires inspecting
the entire IP header, which might otherwise be avoidable.

Thus, if a packet is corrupted on a link so that its IP header is altered, then the router
receiving the packet is supposed to discard it. Furthermore, if either of the 16-bit port fields in the
TCP header are corrupted, then the packet filter used in our study would have rejected the packet, so
we would not have had an opportunity to observe the checksum error. The net effect is that, from the
perspective of the number of corruptible-yet-observable bits, pure acks have a size of only 16 bytes.
(The number of corruptible-yet-observable bits in data packets likewise diminishes, but by a much
smaller fraction.) This effect, plus the factor of 14 difference in size, reduces the weighted error rate
ratio to between about 2:1 and 10:1.

In addition, if a compression technique such as that in CSLIP is used, then pure acks as
transmitted on a link can take much less than 40 bytes (as little as 5 bytes using CSLIP), while
data packets take only slightly less than their full TCP/IP size. The size difference can therefore
expand from 14:1 to 100:1 or even larger. However, it is not clear whether CSLIP is used on any
but quite slow links, since for faster links, the performance cost of compressing and decompressing
the packet headers might outweigh the gains due to the reduced transmission times.

Another possibility is that errors arenot uniformly distributed across the bits in a packet.
We could imagine a scenario, for example, in which each time a new packet is sent, the beginning
of the transmission of a packet on a link serves to synchronize the sender and receiver on the link.
It could then be that for longer packets there is more opportunity for the sender and receiver to drift
out of synchronization, adding noise to the signals used to communicate the bits. Investigating this
possibility, however, is beyond the scope of our study—doing so would require capturing entire
packets in order to assess the distribution of errors within them.

In summary, we can make a somewhat plausible, but not compelling, argument that we
can reconcile the discrepancies in checksum failure rates. If we accept the argument, then the
compression effect's large role in reconciling the two error rate estimates suggests that errors tend

251

to occur most often on point-to-point links, since those are the ones for which compression is widely
used; and furthermore, most likely on slow point-to-point links, as those are the ones for which it is
particularly appealing to use compression. Such links might also plausibly be relatively more prone
to link errors, since the underlying technology will be pushed hard to try to squeeze out as much
bandwidth as possible.

Finally, we note that packet corruption combined with CSLIP can produce surprising
errors. Because CSLIP highly compresses the representation of the IP and TCP headers, but does
not utilize an additional checksum to protect the compact representation, a bit error can result in
packets that appear in many respects perfectly reasonable, albeit different than what was originally
sent! We refer to these as “desynchronization errors,” since one of the elements leading to them is
that the CSLIP sender and receiver have lost agreement upon their common state.

One benign form of desynchronization error exhibits itself as a change in the IP “id” field
(x 10.3.5). This has virtually no effect upon the packet's integrity as far as TCP is concerned, though
it can introduce ambiguities when attempting to match up packets in pairs of traces (x 10.5).

A considerably nastier form of desynchronization error occurs when a packet alters in a
plausible fashion. If undetected by the checksum, these packets will often match what the TCP
receiving them expects, leading to a fundamental mismatch between the connection state at the
two TCP endpoints. We observed several such instances, all inN2 and all involving packets sent
to or from lbli . In one, an acknowledgement for sequence 1 (corresponding to an ack for the
receiver's SYN-ack) arrived at the receiver with an ack for sequence 33 instead, and similarly for
the next packet; then two more packets after those arrived with acknowledgements for sequence 65.
Needless to say, the receiver had never sent any of this data! In others, packets sent without any
data arrived with 512 bytes of in-sequence data, and other packets changed size in flight. All of
these failed their checksum tests. But the ability of a CSLIP link to turn bit errors into plausible
header fields, which is somewhat inevitable due to its clever, heavy use of compression, means that,
when a corrupted packet finallydoespass the checksum test, it is considerably more likely to both
be accepted by the receiving TCP as valid and to desynchronize the TCP's state with respect to that
of its remote peer.

