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Abstract

Measurements and Analysis of End-to-End Internet Dynamics

by

Vern Edward Paxson
Doctor of Philosophy in Computer Science

University of California at Berkeley

Prof. Domenico Ferrari, Chair

Accurately characterizing end-to-end Internet dynamics—the performance that a user actually ob-
tains from the lengthy series of network links that comprise a path through the Internet—is excep-
tionally difficult, due to the network's immense heterogeneity. It can be impossible to gauge the
generality of findings based on measurements of a handful of paths, yet logistically it has proven
very difficult to obtain end-to-end measurements on larger scales.

At the heart of our work is a “measurement framework” we devised in which a humber
of sites around the Internet host a specialized measurement service. By coordinating “probes” be-
tween pairs of these sites we can measure end-to-end behavioraaig paths for a framework
consisting ofV sites. Consequently, we obtain a superlinear scaling that allows us to measure arich
cross-section of Internet behavior without requiring huge numbers of observation points. 37 sites
participated in our study, allowing us to measure more than 1,000 distinct Internet paths.

The first part of our work looks at the behavior of end-to-end routing: the series of routers
over which a connection's packets travel. Based on 40,000 measurements made using our frame-
work, we analyze: routing “pathologies” such as loops, outages, and flutter; the stability of routes
over time; and the symmetry of routing along the two directions of an end-to-end path. We find that
pathologies increased significantly over the course of 1995, indicating that, by one metric, routing
degradedover the year; that Internet paths are heavily dominated by a single route, but that routing
lifetimes range from seconds to many days, with most lasting for days; and that, at the end of 1995,
about half of all Internet paths included a major routing asymmetry.

The second part of our work studies end-to-end Internet packet dynamics. We analyze
20,000 TCP transfers of 100 Kbyte each to investigate the performance of both the TCP endpoints
and the Internet paths. The measurements used for this part of our study are much richer than
those for the first part, but require a great degree of attention to issuesitmfation, which we
address by applyingelf-consistency checks the measurements whenever possible. We find that
packet filters are capable of a wide range of measurement errors, some of which, if undetected, can
significantly taint subsequent analysis. We further find that network clocks exhibit adjustments and
skews relative to other clocks frequently enough that a failure to detect and remove these effects
will likewise pollute subsequent packet timing analysis.

Using TCP transfers for our network path “measurement probes” gains a number of ad-
vantages, the chief of which is the ability to probe fine time scales without unduly loading the
network. However, using TCP also requires us to accurately distinguish between connection dy-



namics due to the behavior of the TCP endpoints, and dynamics due to the behavior of the network
path between them. To address this problem, we develop an analysis pragramly , that has

coded into it knowledge of how the different TCP implementations in our study function. In the
process of developingpanaly , we thus in tandem develop detailed descriptions of the perfor-
mance and congestion-avoidance behavior of the different implementations. We find that some of
the implementations suffer from gross problems, the most serious of which would devastate overall
Internet performance, were the implementations ubiquitously deployed.

With the measurements calibrated and the TCP behavior understood, we then can turn to
analyzing the dynamics of Internet paths. We first need to determine a pattieneck bandwidth
meaning the fastest transfer rate the path can sustain. Knowing the bottleneck bandwidth then lets
us determine which packets a sender transmits must necespagiygbehind their predecessors,
due to the load the sender imposes on the path. This in turn allows us to determine which of our
probes are perforceorrelated We identify several problems with the existing bottleneck estimation
technique, “packet pair,” and devise a robust estimation algorithm, PBM (“packet bunch modes”),
that addresses these difficulties. We calibrate PBM by gauging the degree to which the bottleneck
rates it estimates accord with known link speeds, and find good agreement. We then characterize
the scope of Internet path bottleneck rates, finding wide variation, not infrequent asymmetries, but
considerable stability over time.

We next turn to an analysis of packet loss along Internet paths. To do so, we distin-
guish between losses of “loaded” data packets, meaning those which necessarily queued behind a
predecessor at the bottleneck; “unloaded” data packets, which did not do so; and the small “acknow-
ledgement” packets returned to a TCP sender by the TCP receiver. We find that network paths are
well characterized by two general states, “quiescent,” in which no loss occurs, and “busy,” in which
one or more packets of a connection are lost. The prevalence of quiescent connections remained
about 50% in both our datasets, but for busy connections, packet loss rates increased significantly
over the course of 1995. We further find that loss rates vary dramatically between different regions
of the network, with European and especially trans-Atlantic connections faring much worse than
those confined to the United States.

We also characterize: loss symmetry, finding that loss rates along the two directions of
an Internet path are nearly uncorrelated; loss “outages,” finding that outage durations exhibit clear
Pareto distributions, indicating they span a large range of time scales; the degree to which a connec-
tion's loss patterns predict those of future connections, finding that observing quiescence is a good
predictor of observing quiescence in the future, and likewise for observing a busy network path, but
that the proportion of lost packets does not well predict the future proportion; and the efficacy of
TCP implementations in dealing with loss efficiently, by retransmitting only when necessary. We
find that most TCPs retransmit fairly efficiently, and that deploying the proposed “selective ack-
nowledgement” option would eliminate almost all of their remaining unnecessary retransmissions.
However, some TCPs incorrectly determine how long to wait before retransmitting, and these can
suffer large numbers of unnecessary retransmissions.

We finish our study with a look at variations in packet transit delays. We find great “peak-
to-peak” variation, meaning that maximum delays far exceed minimum delays. Delay variations
along the two directions of an Internet path are only lightly correlated, but correlate well with loss
rates observed in the same direction along the path. We identify three types of “timing compres-
sion,” in which packets arrive at their receiver spaced more closely together than when originally



transmitted. The prevalence of none of the three is such as to significantly perturb network perfor-
mance, but all three occur frequently enough to require judicious filtering by network measurement
procedures to avoid deriving false timing conclusions.

We then look at the question of the time scales on which most of a path's queueing vari-
ations occur. We find that, overall, most variation occurs on time scales of 100—1000 msec, which
means that transport connections might effectively adapt their transmission to the variations, but
only if they act quickly. However, as with many Internet path properties, we find wide ranges of
behavior, with not insignificant queueing variations occurring on time scales as small as 10 msec
and as large as one minute.

The last aspect of packet delay variations we investigate is the degree to which it reflects
an Internet path'available bandwidthWe show that the ratio between the delay variations packets
incur due to their connection's own loading of the network, versus the total delay variations incurred,
correlates well with the connection's overall throughput. We further find that Internet paths exhibit
wide variation in available bandwidth, ranging from very little available to virtually all. The degree
of available bandwidth diminished markedly over the course of 1995, but, as for packet loss rates,
we also find sharp geographic differences, so the overall trend cannot be summarized in completely
simple terms. Finally, we investigate the degree to which the available bandwidth observed by
a connection accurately predicts that observed by future connections, finding that the predictive
power is fairly good for time scales of minutes to hours, but diminishes significantly for longer time
periods.

We argue that our work supports several general themes:

e The N? scaling property of our measurement framework serves to measure a sufficiently di-
verse set of Internet paths that we might plausibly interpret the resulting analysis as accurately
reflecting general Internet behavior.

e To cope with such large-scaled measurements requires attention to calibration using self-
consistency checks; robust statistics to avoid skewing by outliers; and automated “micro-
analysis,” such as that performed tapanaly , that we might see the forest as well as the
trees.

e With due diligence to remove packet filter errors and TCP effects, TCP-based measurement
provides a viable means for assessing end-to-end packet dynamics.

¢ We find wide ranges of behavior, so we must exercise great caution in regarding any aspect
of packet dynamics as “typical.”

e Some common assumptions such as in-order packet delivery, FIFO bottleneck queueing, in-
dependent loss events, single congestion time scales, and path symmetries are all sometimes
violated.

e The combination of path asymmetries and reverse-path noise render sender-only measure-
ment techniques markedly inferior to those that include receiver-cooperation.

Finally, we believe an important aspect of this work is how it might contribute towards
developing a “measurement infrastructure” for the Internet; one that proves ubiquitous, informative,
and sound.
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