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Chapter 16

Packet Delay

The final aspect of Internet packet dynamics we analyze is that of packet delay. Delay
variation is arguably the most complex element of network behavior to analyze—with loss, for
example, the packet either shows up at the receiver or it does not, while with delay there are many
shades of possibility and meaning in the time required for a packet to arrive. Likewise, delay
variation is potentially the richest source of information about the network, as one of the principle
elements contributing to delay is queueing within the network, which is of vital importance in
understanding how network capacities evolve over time.

Any accurate assessment of delay must first deal with the issue of clock accuracy, as all
delay measurement stems from clock measurements. Unless we tightly calibrate the clocks used
for delay measurement, or, equally important, recognize which clocks cannot be well calibrated and
discard the corresponding measurements, we cannot know that the subsequent analysis reflects true
network behavior and not spurious or misleading clock artifacts. It was these considerations that led
us to the lengthy efforts developed in Chapter 12.

We proceed as follows. 1§116.1 we briefly discuss round-trip time (RTT) variation in our
measurements, which plays a central role in transport protocol behavior. From the point of view of
network path analysis, however, a packet's one-way transit time (OTT) is more fundamental, partic-
ularly since RTT measurements conflate delays along the forward and reverse path. Consequently,
we devote the remainder of the chapter to OTT analysis; 16.2, we discuss OTT variation in
large-scale terms. We then §nl6.3 turn to packet timingompression-network events in which
a group of packets arrive at the receiver more closely spaced together than when they were sent.
Compression is a significant event because it introduces potentially misleading discrepancies be-
tween the timing of events at the sender and at the receiver, clouding the ability of one endpoint to
assess conditions perceived at the otheg. 16.4 we then tackle estimation of the amount of queue-
ing packets encounter during their transit. We attempt to determinnbescalesassociated with
queueing, but find wide variation. Finally, §116.5 we look at the relationship between queueing
delays andavailable bandwidth-the transfer rate the network can sustain for a connection, given
the network's current load.
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16.1 RTT variation

16.1.1 Therole of RTTs

A transport connection's round-trip time (RTT) plays a central role in the connection's
behavior. First, a reliable transport protocol such as TCP needs to decide how long to wait for an
acknowledgement of data it has sent before retransmitting the data. There is a basic tension between
wanting to wait long enough to assure that the protocol does not retransmit unnecessarily, versus
not wanting to wait too long so as to unduly delay the connection when in fact retransmission is
needed. Our analysis of the Solaris 2.3/2.4 TCP14.5.10 highlights how unfortunate it can be to
err on the side of retransmitting too quickly. Network researchers have made considerable efforts in
studying how to set a connection's retransmission timeout (RTO), and early problems with TCP's
RTO computation identified by Zhang [Zh86] have for the most part been rectified by the work of
Karn and Partridge in eliminating ambiguous RTT measurements [KP87], and by that of Jacobson in
introducing exponentially-weighted moving averages to estimate both RTT and its variance [Ja88].

The second way in which a connection's RTT influences the connection's behavior con-
cerns the important notion dfandwidth-delay produgiBDP). A connection's BDP is the product
of p4, the available bandwidth, measured in bytes/sec, witihhe RTT, measured in seconds. The
result is a numbeB = p,4 - 7 of bytes indicating how much data the connection must have in flight
to fully utilize the available bandwidth. A simple way to understand this relationship is to consider
that, to fully utilize the available bandwidth, the connection must sentlytes every second, and
thus it must seng 4 - 7 bytes every round-trip time in order to achieve this goal. A round-trip time,
however, exactly corresponds to one cycle of send-and-receive feedback. This relationship, in turn,
is directly reflected in the connection\dndow (§ 9.2.2)—the current window controls how much
data the connection can have in flight at any given moment, and the window can only change due to
feedback for the currently in-flight packets after one RTT has elapsed, since no feedback can arrive
sooner than that. Thug3 gives the size of the window the connection must use to fully utilize a
bandwidth ofp 4.

We must, however, make a crucial distinction between these two different roles of RTT
in a connection's behavior. For the first role, regulating retransmission, the RTT of interest is how
long it might take for a packet to reach the receiver and the corresponding acknowledgement to
return to the sender—th@aximumRTT. For the second role, the RTT of interest is thimimum
time required for packets to traverse the network path to the receiver and for acks to return. The
larger values possibly observed for tlaetual amount of time required in general reflegieueing
along the network path. It doe®t improve a connection's throughput to use such a larger RTT
when computingB; it instead only adds to queueing along the path. This observation motivated the
development of TCP Vegas [BOP94], in which a significant increase in measured RTT is interpreted
as due to using too large a window and adding to queueing along the path, and thus calling for a
decrease in the window size to diminish the queueing.

16.1.2 RTT measurement considerations

When discussing RTT times, we must bear in mind that larger packets require larger
transmission times, proportional to the bottleneck bandwidth. The effect, naturally, is most apparent
on slow links. Accordingly, we need to make sure we do not confuse RTT variation due to packet
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size with RTT variation due to queueing.

Another consideration is that, if we measure RTT as simply the difference in time be-
tween when a packet is sent and when a corresponding reply returns, then we will include in the
measurements “response delays” at the recelyv&d (6.4). For many purposes, doing so is appro-
priate, since the roles played by RTT above both concern quantifyinfpéabbackiime scale, and
this includes both the network's delays and those of the receiver. If, however, we wish to discuss
only the network's contribution to the feedback time scale, then we need to deduct the response
delay from the measured RTiEpanaly can do this since it knows how to pair packets with their
responses. However, we argue that the network's contribution to delay is best studied in terms of
one-way transit times (OTT), since doing so allows for the possibility of asymmetries along the two
directions of the network path, which we find §n16.2.3 are in fact common. So, for our RTT
analysis, we do not deduct response delays from the measurements, that we might study the entire
“closed loop.”

Finally, we note that RTT can be measured in two different ways: as the amount of time
elapsed between when a TCP sends a packet and when it receives an acknowledgement in response
to that packet, or as the time between when a TCP sends an acknowledgement and when it receives
the packet liberated by that acknowledgem@rity.3.1). As we might expect, overall we find these
two values to be very close to one another, except for variations due to “response dglHy§'4).

(They also can appear different if the clocks at the sender and receiver run at significantly different
rates, peg 12.7.7.) In the remainder of this section, we confine our analysis to RTTs measured at
the sender.

16.1.3 RTT extremes

Extremes of network behavior are always interesting to consider, since they sometimes
challenge the assumptions made by our mental models of how networks “really” work. For example,
some might find RTTs larger than a few hundred milliseconds exceedingly unlikely—where could
a packet spend all that time?—and thus best treated as pathological events rather than part of the
regime we must accommodate as “normal.” (We saw how dangerous this can be in Figure 11.9.)

Our data is inappropriate for exploring the full range of RTTs one finds in the Internet,
since the set of sites in our study is small, and we would expect RTT extremes to be governed for
the most part by geography. This is especially the case for network paths that include satellite links,
as these can add hundreds of milliseconds due to the propagation delays up to and back down from
the satellite.

However, while geography certainly dominates upper RTT extremes, it is not the only
factor. To our surprise, we found that one site in our stody, experiences extremely high delays
for many of its connections. 50% of its connections had a minimum RTT of over 1 sec.

oce is sited in the Netherlands. One striking connection came frastl in North
America. It never observed an RTT less than 4.4's@clother came fronanij , never experiencing
an RTT below 2.3 sec—yeinij is also in the Netherlands! #aceroute  from unij to oce
reveals that the route stays wholly within the Netherlands. Furthermore, it shows that all of the delay
occurs at the hop between NLNet, the Netherlands Internet backbone, amgbthde itself. The

!Alas,wustl is a Solaris 2.4 site. Its RTO timer had great difficulty accommodating the large RTT, per Figure 11.9.
During the first minute of the connection, before the timer finally adapted, it sent 31 new data packets and 51 retransmis-
sions, all but one unnecessary. One packet was retransmitted seven times!
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cause of this large delay, which we discussefl 12.7.8, remains unexplained, despite investigative
efforts by staff at theoce site. It highlights, however, how commonplace—and often correct—
assumptions concerning network behavior can be violated in unexpected ways.

Even after eliminatingpce, we still find some striking RTT extremes. Connections in-
volving austr2  experienced minimum RTTs as high as 1.85 sec (to a host in Califdrrifaje
removeaustr2 , then, curiously, the next highest extremes involved not international traffic but
connections with both endpoints in the United States. One, fvastl  to adv, never saw an RTT
lower than 1.2 sec, even though a connection ten minutes earlier had a minimum of 156 msec, and
one 25 minutes later was back to the typical value of 47 msec. Unfortunately, we do not have a
traceroute  measured right at the time of the anomalous connection. Ones fifteen minutes earlier
and 80 minutes later show no anomalies and both report an RTT of about 44 msec.

The most extreme RTT connection M; involved notkorea , for which we might ex-
pect high RTTs (and, indeed, it had plenty), budo andbsdi , in Virginia and Colorado. This
connection had a minimum RTT of 1.4 sec and a median value of 2.1 sec. Whie3we gave
an example of a circuitous route involvirgsdi , traceroute  reported its RTT as only about
160 msec, much less than observed by this connection; so, we do not have an explanation for what
took the packets so long.

So far in this section we have focussed on itieimumRTT observed during a connec-
tion, which is important for correctly determining, the bandwidth-delay product. For computing
RTO, the connection's retransmission timeout, we instead are interestedriaxtheunRTT, which
we now look at briefly. (As discussed §nl5.6, we do not undertake a detailed analysis of how we
might modify TCP's RTO algorithms to increase their performance, as this is a complex problem.)

We would expect that RTT maxima can rise very high for connections with slow bottle-
neck links and many available buffers at the bottleneck. In such cases, the sending TCP will not
receive a packet loss signal until it has exhausted the available buffer. For a slow link, a significant
amount of buffer can translate into a huge delay as packets finally wend their way through the queue.

The largest apparent RTT we ever observed was 23.8 sec, for a SYN packet and its accom-
panying SYN-ack. This was not, however, a true RTT: the receiving SunOS 4.1 TCP generating the
SYN-ack was retransmitting it in an attempt to establish the connection, and its timer backed off first
to 6 sec and then to 24 sec. At the same time, the sender, also a SunOS 4.1 TCP, was backing off its
retransmission timer for the original SYN. The two timers were slightly out of phase. Consequently,
just before the sender reached the 24 sec retransmission, a SYN-ack arrived from the receiver, lead-
ing to the huge apparent RTT. We mention this anomaly because some modifications to TCP such
as Hoe's in [H096] suggest using the RTT timing for the SYN packet as a quick estimate of the
path's true RTT. Such schemes must take care not to get fooled by SYN-ack retransmissions. In this
particular case, use of Karn's algorithm would have discarded the RTT measurement as ambiguous
[KP87]. However, had the retransmitted SYN-ack arrived just befordisteetransmission of the
SYN (i.e., just before the 6 sec timer expired), then even Karn's algorithm would have accepted the
measurement, since the algorithm is predicated upon the assumption that acks are not retransmitted.
Finally, we note that Hoe's scheme uses the RTT to estiBatee bandwidth-delay product. Using
a value of 6 sec instead of the correct value of 220 msec would grossly overesBiriataling to
the connection overestimating the window it should use. Hoe's scheme, however, could be easily
modified to use a more robust initial RTT estimate, since it does not make any decisions based on

2austr2 |, alas, is also a Solaris 2.4 site.
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B until it has received a flight of 3 closely spaced acks. At that point, there should have been ample
opportunity to estimate RTT better.

Putting aside anomalies due to SYN-ack retransmissions, we find that the largest true RTT
in our study was 15.1 sec, for a connection involvowg . We discussed abowge 's peculiarly
large RTTs, and i§ 12.7.8 the puzzling interplay between the transit times of packets and acks in
its connections, so we will not further analyaee -connection RTTs here. If we eliminatee,
then we find the next largest RTT comes from the 12-second packet reordering event discussed in
§ 13.6. Putting aside this pathology, we finally find a “normal” extreme RTT, not due to any unusual
network dynamics, of 7.9 sec (involving a connectionidd , which has a low-speed Internet
link with a lot of buffer space). A few others range above 6 sec, including one from a high-speed
connection betweesintef2  in Norway andaustr in Australia.

16.1.4 RTT variation during a connection

Another way to characterize RTT extremes is in terms of the variation we observe in RTT
over the course of a connection. Our interest lies in whether we can develop a “rule of thumb”
such as “it is rare to observe a maximum RTT more than double the minimum RTT.” This sort
of empirical finding would aid in considering how transport protocols can best adapt to network
conditions.

We first note that connections with slow bottlenecks can often experience great swings in
RTT as their own packets pile up at the queue for the bottlerfgtg.(.3). While such connections
are an important consideration for general-purpose transport protocols, for our purposes we elimi-
nate any connection with an estimaieg less than 100 Kbyte/sec, so that we might focus on RTT
variations not heavily dominated by the connection's own behavior. We also eliminate connections
betweersintefl andsintef2 , as they are sited very close together and thus much more easily
exhibit large relative swings in RTT, even though in absolute terms the swings are quité small.

After these eliminations, in/; we are left with 12,486 connections. Figure 16.1 shows the
distribution of the ratio between their maximum RTT and minimum RTT, log-scaled. We compute
RTTs from the TCP sender's perspective, using the time required to receive an acknowledgement
for a full-sized packet.

The distribution shows great variation, with a median ratio of 2.2:1 (mean of 3:1), but the
upper 5% have ratios of 6.7:1 and higher. The entire upper 50% fits closely to a Pareto distribution
with a = 2.1, shown with a log-log complementary distribution plot in Figure 16.2 (we discussed
these plots ir§ 15.3). A value ofx > 2 means that the ratio has finite variance, and this is probably
due to the fact that the maximum RTT is bounded by the amount of buffer space available along the
network path. However, the great degree of variation means that, without additional information,
we cannot accurately predict the relationship between the minimum and maximum RTTs.

The ratios exhibit one other striking distribution. If we instead consider the ratio of the
MinimumRTT to themaximum then the corresponding distribution is very nearly normal. Fig-
ure 16.3 shows this distribution, with a normal distribution fitted to the mean and variance shown by
a dotted line. Figure 16.4 shows a Q-Q plot of the same fitted normal, with the line corresponding
to slope 1 and offset 0. Clearly, the agreement is quite good except in the tails. Unfortunately, an

3The pairlbl andlbli  do not exhibit this problem becaulidi  's low-bandwidth ISDN link leads to fairly large
RTTs between the two sites.
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Figure 16.1: Distribution of the ratio between a connection's maximum RTT to minimum RTT
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Figure 16.5: Distribution of RTT interquartile range

interpretation for this fit (or for the corresponding Pareto fit) eludes us. As with the elusive expo-
nential fit to data packet loss ratesl5.2), we mention the fit here in hopes that it might stimulate
further research.

We finish with a look at less extreme RTT variation: the interquartile range (75th per-
centile minus 25th percentile), IQR. This range gives a much more robust statistic in the sense of
being insensitive to extreme values. We are particularly interested in IQR as an aid in estimating the
maximum RTT, as this has immediate applications for computing retransmission timeouts (RTOS).

Figure 16.5 shows the distribution of IQR, and Figure 16.6 shows the distribution if we
normalize to the minimum RTT. Both plots use a logarithmic scale orcthgis. We see a wide
range of variation, with the lower and upper 5% tails of the absolute range spanning 6 msec up to
106 msec, and, with normalization, the same tails range from a factor of 0.046 up to a factor of 1.23.

The interquartile range is in many ways analogous to a robust version of standard devi-
ation [Ri95]. Consequently, we interpret the wide range of variation as supporting the argument
that RTT estimation (for purposes of computing timeouts, for example) must include a notion of
variation in addition to estimating the mean or minimum value. Jacobson's estimator does exactly
this for TCP [Ja88].

In Figure 16.2 we found that maximum RTTs often are much larger than minimum RTTs.
We might wonder, though, whether this discrepancy can be reduced if expressed in terms of RTT
variation. For example, it could be the case that the maximum is generally less thraas IQR
above the minimum. Unfortunately, this does not appear to be the case. Figure 16.7 shows the
distribution of the difference between the maximum and minimum RTT, normalized by dividing by
IQR. Again, thez-axis is scaled logarithmically, indicating a wide range of variation. Furthermore,
normalization has diminished but not eliminated the Pareto distribution for the upper tail. Instead
of occupying a full 50% of the distribution, it now occupies the upper 20%, with 1.84, within
the domain of infinite variance. Finally, these results do not change appreciably if we look at the
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normalized difference between the maximum RTT andntieelianRTT, rather than the minimum
RTT.

From Figure 16.7 it appears that the combination of minimum RTT and interquartile range
is inadequate for estimating maximum RTT. TCP RTO estimation is based on similar information,
i.e., the estimated RTT mean and standard deviation. Yet, we should not conclude from this that
TCP's estimation algorithm cannot work, because the algorithdatesits estimates as the con-
nection progresses, using exponentially-weighted moving averages to incorporate new information.
Consequently, it has opportunities adapt while the preceding analysis $atic Again, as dis-
cussed ir§ 15.6, we do not undertake here a detailed analysis of how well TCP's RTT estimation
algorithm performs, as doing so involves a number of subtle issues.

16.2 OTT variation

For the remainder of this chapter, we focus on one-way transit times (OTTs). Any ac-
curate assessment of delay must first deal with the issue of clock accuracy, from which all delay
measurement stems. This problem is particularly pronounced when measuring OTTs since doing
so involves comparing measurements from two separate clocks. It was primarily to this end that
we undertook the efforts described in Chapter 12 attempting to assure that we can soundly gauge
the trustworthiness of the packet timestamps. The subsequent analysis we discuss was always done
after first using these algorithms to reject or adjust traces with clock errors.

OTT variation was previously analyzed by Claffy and colleagues in a study of four Internet
paths [CPB93a]. They found that mean OTTs are oftetwell approximated by dividing RTTs in
half, and that variations in the paths' OTTs are often asymmetric. From our data we cannot confirm
their first finding, but we discuss the asymmetry finding shortly.

16.2.1 Why we do not analyze OTT extremes

We do not investigate extreme OTT variation, as we did for RTTS 116.1.3, for two
reasons. First, most of the RTT extremes are due to network delays, and, in particular, extreme
OTTs, so the OTT results are very similar to the RTT resul®econd, our absolute OTT values
were derived using the approximation that we could rectify clocks in our study by dividing RTTs in
half (Egn 12.5 in§ 12.5.1). We know from the Claffy et al. study, and from our earlier results on
routing asymmetries;(8), that this approximation is often erroneous, and we noted in the derivation
that consequently we must refrain from analyzing the absolute OTT values themselves.

16.2.2 Range of OTT variation

Our measurements do, however, let us accurately agaéssionsin OTT. In doing so,
we will always distinguish between ack OTTs and data packet OTTs, as we expect the latter to
show significantly more variation due to their queueing load. Figure 16.8 shows the distributions
of IQR and max-min variations in OTTs fgv, data packets and acks. Again, we have limited our

“This would not have been the case if RTT extremes were due to delays by the TCP endpoint, or combined increases
in delay along the two directions of the network path. But neither of these is the dominant effect.
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Figure 16.8: Distribution of interquartile and max-min OTT variation

analysis to connections with a bottleneck bandwidth exceeding 100 Kbyte/sec, and have removed
those betweenintefl ~ andsintef2

The z-axis reflects logarithmic scaling; so, as with many aspects of RTT variation, we
see a wide range of variation. For example, for data packets the median ratio between the max-min
variation and IQR is 3.5:1, and the upper 5% tail exceeds 13:1. For acks, the numbers are higher,
the median being 5:1 and the upper 5% tail at 29:1. The difference lies in data packets having a
larger IQR to begin with, due to OTT variation caused by the connection's own queueing; for acks,
IQR is fairly tame, so the same absolute OTT extreme will be relatively larger when compared to
the IQR.

As with normalized RTT variation (Figure 16.7), much of the distribution of the ratio
between maximum OTT variation and IQR fits well to a Pareto distribution, for both data packets
and acks. Here, the fit is to the entire upper 50% of the distribution, and'thare well below 2,
reflecting sometimes enormous variation.

16.2.3 Path symmetry of OTT variation

We now turn to the relationship between OTT variation on the forward path and that on
the reverse path. Fa¥s,, we find that the coefficient of correlation, between the max-min OTT
variations of the data packets and the corresponding acks is about 0.1—quite weak, though not
negligible. For IQR, it drops to 0.06, and for the max-min variation divided by IQR, it drops still
further, to 0.02.

However, these statistics do not tell the whole story. As noted above, the forward path is
often perturbed by the queueing load of the connection's data packets. We can instead look at OTT
variation for only unloaded packets (where a packet is considered unloaded if it does not satisfy
Egn 15.5). Such packets dibt queue behind their predecessors, unless cross traffic delayed their
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predecessors. If we analyze only unloaded packets on the forward path),libemeen the IQRs of

the forward and reverse variations rises to 0.18, considerably more substafaiahe logarithms

of the IQRs is 0.55, indicating that the order of magnitude of the variation along one path is a
good predictor of the order of magnitude of the variation encountered along the dtlygre 16.9

shows a scatter plot of the forward path IQR variation for unloaded data packets, versus the ack IQR
variation. Note that both axes are log-scaled.

The correlations appear to indicate that delay variations along both directions of an Inter-
net path are indeed coupled, albeit weakly. However, we must investigate a bit further. It could be
the case that onlgomelnternet paths have coupled variations, while most do not. In particular, we
found in§ 15.1 that European sites have higher loss rates than those in the United States, and that the
paths from Europe to the U.S., and, particularly, from the U.S. to Europe, have the highest loss rates.
So it could easily be that traffic between the U.S. and Europe, which traverses in each direction the
highly congested trans-Atlantic links, experiences similar delay variations in both directions; while
other traffic does not.

To test this effect, we repeated the above analysis with only tRes®nnections between
two sites in the U.S. We found that the correlations were only slightly weaker, indicating that the
effect has only a mild influence.

In summary: if we know the OTT variation along one direction of a path, then we can
fairly well predict the order of magnitude of the variation along the other direction. Predicting the
variation to a finer degree is difficult. However, if we are interested not in the intrinsic delays along
the path, but the delays actually experienced by a TCP connection, which include variations induced
by the connection's load (i.e., its packets queueing behind their predecessors), then prediction is very

®If we normalize the IQRs by the round-trip times, the coefficients of correlation do not change much (rising to 0.22
and falling to 0.50, respectively).
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difficult; the two directions are nearly uncorrelated.

16.2.4 Relationship between loss rate and OTT variation

It is natural to expect that delay variation might be closely correlated with packet loss,
because, whenever packets are delayed in the network, they must be stored somewhere, and that
storage will have a finite capacity. Thus, if delay climbs high enough, loss ensues as buffers become
exhausted. However, this relationship can be obscured if routers have enough buffers to absorb
considerable delay variations. It can also be obscured because delay variation derives &onda the
to-endconcatenation of variations at each hop along a path, while loss is presumed to be governed
by one or perhaps a few overloaded elements along the path. Hence, many elements will contribute
to delay variation but not to loss.

To investigate the relationship between delay variation and loss, we look at how the IQR
of ack OTT variation correlates with the loss rate experienced by the acks. (We confine our analysis
to acks to avoid the complications introduced by higher data packet loss rates due to the load they
present to the forward path, pgd5.2.)

Overall, we findy = 0.22, indicating a definite, but not overly strong, linkage. However,
much of the linkage comes from low OTT variation being coupled with experienointpss a
situation we referred to if 15.1 as “quiescence.” If we confine our analysis to those connections
experiencing at least one loss (“busy”), thedrops to 0.12. Figure 16.10 shows the corresponding
scatter plot. The plot shows some apparent structure: the region corresponding to a very low loss rate
(on they-axis) appears separate from the rest of the plot. However, this difference is a granularity
artifact. The log scale highlights the difference between losing a single ack and losing two ack,
since the latter corresponds to twice the ack loss rate of the former. Setting aside this artifact, we
conclude that there is no strong relationship between OTT variation and loss rate.

If we log-transform both the IQR and the loss rate, therlimbs to 0.35, indicating that
the order of magnitude of the IQR is a fairly good predictor of the order of magnitude of the loss rate,
but nothing finer. These statistics are virtually unchanged if we confine our analysis to connections
between U.S. sites, so the effect is not being skewed by the trans-Atlantic or European sites, which
differ in their loss patternsg(15.1).

Finally, if we normalize the delay variation IQR by the connection's round-trip time, then
correlationdecreasesand, for “busy” connections, the two become uncorrelated, ywith—0.02.

We conclude that the linkage between delay variation and loss is weak, though not negli-
gible. Unfortunately, from our data it is difficult to discern which of the two effects mentioned at the
beginning of this section weakens the linkage: routers having large amounts of buffer space, or the
end-to-end chain accruing a number of small variations into a single, considerably larger variation.

16.2.5 Evolution of OTT variation

We now look briefly at how OTT variation evolves with time. To do so, we follow the
methodology used if115.5 to assess how loss rates evolve with time. For each connetisiween
the same source and destination, we compute the Adir, |Ao.|), whereAT, is the time between
that connection and the next successful connectigrwe observed along that path; ajfo,| is
the absolute value of the difference between the IQRs of the ack OTT variationarfde’, where
each IQR is normalized by the connection's round-trip time.



336

o
o
3 -
o
o
S,

q_) H

EO

4

7))

2 3

a9

xO

(&)

<
o
—
g -
o
Ko}
o
S 4
o

\ \ \ \
0.001 0.010 0.100 1.000

Interquartile OTT Variation (sec)

Figure 16.10: Scatter plot of ack loss rate versus interquartile ack OTT variatiokf; fmwnnections
that lost at least one ack



337

o
— o
= —_ o
= =3 — H
= =] =
= -
< S S e
E -\"h-‘ S
o "-'
= N
= ;
g 8 7
[3=]
= Y
=2 N
= w W
D
D
g ﬁ!l
D
[==] Lo
a [==3 —
8 L) ‘
<
o lﬂl \
=
[a=Y %
k=1 B
[<B)
=1
=2 A
|
= L)
T T T T T
10"2 10"3 104 1075 1076

Interval Between Connections (sec)

Figure 16.11: Evolution of how the interguartile range of normalized ack OTT variation differs with
time

After constructing these pairs, we sort them A, and then use an exponentially-
weighted moving average (EWMA) withk = 0.01 to smooth howAo,| evolves as a function
of AT.. We first computed the EWMA with an initial value of 0, but inspecting the resulting plot
indicated that, even for very smalT7,'s, |Ao.| was around 0.04, so we used 0.04 for the initial
value in our final computation.

Figure 16.11 shows how the smoothéxb,| evolves with time. The horizontal line cor-
responds to the median normalized ack OTT interquartile range for a single connection: a bit over
5% of the RTT. Note that thg-axis ranges from only 0.04 to 0.07. Thus, the change in normalized
variation slowly ranges from a bit below the median variation to a bit above, across a wide range of
time scales. Figure 16.12 shows the same plot except for “raw” ack OTT variations, that is, the IQR
of the variations without normalizing by dividing by the connection's round-trip time. Again, we
see a rapid rise followed by a slowly-increasing regime between 6-9 msec (keep in mind that this
plot is heavily averaged; some paths have IQR variations far higher than 10 msec). The horizontal
line corresponds to the median IQR variation for a single connection—just under 6 msec—which is
quickly exceeded.

Since even the minimurmAo,| is not a great deal below the median normalized OTT
variation, and the raw IQR differences rapidly exceed the median raw OTT variation, we conclude
that a connection's ack OTT variatiomista very good predictor of future variation. This compares
with Figure 15.18, which shows that a connection's loss rate is not a very good predictor of its
future loss rate, either. Both figures argue that caching detailed network path information will prove
beneficial only in the near-term, meaning on the order of a few minutes into the future.
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16.2.6 Removing load from OTTs

In § 15.2 we developed the notion of “loaded” data packets, namely those which would
have to queue behind their predecessors at the bottleneck due to the spacing between the time of
their transmission and that of their predecessors. In this section we look at the subtle problem of
removing the packet's load, as given by Egns 15.3 and 15.4. The main problem we face in doing so
is that the estimated bottleneck bandwidth given by Eqn 14.12 in Chapteinkkét In particular,
our methodology produces an errangeassociated with the estimate.

Depending on which value within this range we use, Eqns 15.3 and 15.4 (or, more ac-
curately, their counterparts for the particular estimate we use) can in some circumstances produce
considerably different values for a packet's load. Thus, if we subtract that load from the packet's
OTT we can easily under- or over-estimate the packet's “true” OTT, meaning its OTT if it did not
have to queue behind its predecessors at the bottleneck.

We can partially address this uncertainty using a self-consistency check for the estimated
bottleneck bandwidth. In particular, we can test the soundness of the central estimate of the bottle-
neck bandwidthp g, as follows. We first compute for each connectitdty, the difference between
the minimum and maximum OTTs for the connection's loaded data packets. (The difference is
presumably due to queueing, hence the notafigh) We then subtract out each packet's load (as
given by Eqns 15.3 and 15.4 when using rather tharp, per Eqn 14.12), and computeQ), the
residual difference between the minimum and maximum OT@.is thus the counterpart thQ
for the loaded packet OTTs, after adjusting for the connection's own contribution to the delays. We
would expect to find

AQ < AQ,

since a connection's extra, self-induced delay should only increase the OTT extremes it experienced.
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Figure 16.13: OTT plot revealing “broken” bottleneck estimate: one that is too low. Solid squares
mark unadjusted OTTs, hollow squares mark OTTs adjusted to remove load based on bottleneck

estimate.

If, however, we find that _
AQ > 1.1-AQ, (16.1)

and if the difference between the two is also larger than twice the joint clock resoliio(t 12.3)

(to assure that it is not just due to measurement noise), then we consider the bandwidth ggtimate
asbroken likely wrong, since using it to subtract out queueing effects actually increases the range
of OTTs we observe.

This check is not foolproof. It can generate both false positives and false negatives. For
example, it may be that the packet with the greatest OTT had little load to subtract out, while that
with the least OTT happened to have more load, leading to an erroneous determinatjon ithat
broken. Using a factor of 1.1 in Egn 16.1 helps avoid the possibility of these sorts of false positives,
by only flagging aoi estimate as broken if using it leads to a significant increase in adjusted delay.

The check might also fail, generating a false negativesifis indeed quite inaccurate,
but subtracting out inaccurate loads from the OTTs still happens to reduce their range. We find that
these false negatives are much more likely to occugifs too high, since an overestimate leads to
relatively little (but still some) load being subtractedp}f is an underestimate, then excessive load
is removed, which tends to lead to some packets having grossly under-adjusted OTTs, widening

AQ.

The test is worth making because it detects two situations of interest. First, as noted
above, ifpp is too low, then the calculated packet loads will be too high, and subtracting them out
will often expand the range. Figure 16.13 shows an instance of this occurring. The solid squares
show the OTTs of the connection's data packets, and the hollow squares correspond to the OTTs
adjusted for the (erroneously too small) bottleneck bandwidth. The trend towards progressively
lower adjusted OTTs indicates that the low estimate leads to removing more and more spurious load
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Figure 16.14: Another OTT plot revealing a “broken” bottleneck estimate: one that failed to detect
a change in the bottleneck rate. Solid squares mark unadjusted OTTs, hollow squares mark OTTs
adjusted to remove load based on bottleneck estimate.

as the connection transmits more packets that are erroneously judged to queue behind one another.

We particularly want to detect the caseogf too low, because later in this chapter we will
use load computations as a basis for determining the degree of available bandwidth in the network
(§ 16.5), and we want these computations based on solid estimates of packet loads. The other case
that the test can detect is the presence of an undiagnosed bottleneck changeorfesponds to
the slower of the two bottleneck rates, thepanaly  will compute excessive loads for the packets
transmitted during the era of the faster bottleneck rate. Figure 16.14 illustrates this happening. The
estimated g is fairly accurate for most of the trace (a bit too high, as indicated by the slowly rising
adjusted OTTs—not enough load is being removed). Howevét,-atl2 sec, when the bottleneck
rate doubles, the estimate becomes much too low, and leads to removing too muth load.

Table XVIIl in § 14.7 summarizes how often this check detected a broken bottleneck rate
estimate inV; andAs. It was not very often, which contributes to our faith in the PBM algorithm
for detecting bottleneck rate§ (4.6), but it did detect some problems, indicating it is worth the
effort to perform the test.

As the lefthand portion of Figure 16.14 indicates, a slight mismatchgircan lead to
definite, spurious trends in the adjusted OTTs. Such trends are apparent even when the estimated
pp IS quite good. Figure 16.15 shows an OTT plot in which the bottleneck estimate is clearly
guite good, as it accounts for virtually all of the variation in the OTTs (the adjusted times, shown
with hollow squares, are nearly constant). Yet, if we zoom in on just the adjusted OTTs, shown
in Figure 16.16, we see a clear downward trend in the adjusted OTTs. The trend corresponds to
500 usec over about 300 msec, or about 1 part in 600. Consequently, we see that, even though our

SPBM does not detect this bottleneck change because it comes so close to the end of the trace.
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Figure 16.17: Ack OTT plot showing 10-sec periodicities

estimatedp is quite good, it is not sufficiently exact to avoid introducing an artificial trend in the
adjusted OTTs.

Because of this problem, we abandoned our original goal of trying to treat loaded packets
the same as unloaded packets by adjusting their OTTs, as doing so requires extremely precise es-

timation of p. If the estimate is off, we introduce systematic errors that could easily be confused
with genuine network effects.

16.2.7 Periodicity in OTTs

In § 15.3 we discussed our efforts at testing whether packet loss patterns exhibit period-
icity. We might expect them to do so due to synchronization effects known to sometimes plague
Internet routers, resulting in periodic packet forwarding outages. These lead to lengthy delays and
perhaps loss, if buffers become exhausted during the outage [FJ94]. In this section we briefly discuss
evidence in our data for periodic variations in packet delays.

In attempting to assess delay periodicities, we run into the same problems as when assess-
ing loss periodicities: our data unfortunately are not suited for a proper investigation of the question.

§ 15.3 outlines the reasons for this and we will not repeat them here. We did, however, attempt the
same analysis as {n15.3: we selected connections between the North American sites exhibiting the
highest degree of clock synchronization, singled out the busiest day among them, and analyzed their
connections to determine the time at which the connection’'s largest delay occurred. We then studied
plots of the peak delay time versus the same time modulo different possible periodicity intervals.
This effort did not find any conclusive evidence of global periodicities.

However, phenomenological inspection of other traces shows that delay periodicities def-
initely do occur. Figure 16.17 shows a plot of ack OTT times for a connection mmix to
ucl . The distance between the first OTT peak at about 1000 msec and the second such peak (we
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are ignoring the striking, 2000 msec peak) is 10.07 sec, while that between the second peak and the
third such peak (at about 1200 msec) is 19.92 sec. Furthermore, twevacksent about 10 sec
after the second peak, but both were lost (hence, they do not appear on the plot). Thus, this trace
exhibits strong evidence of a 10-second periodicity. We find a number of other traces wath
the same spacing between delay peaks, suggesting that this is an ongoing phenomenon.

We observed other traces with apparent 5-second and 30-second periodicities in delay
spikes, involving different hosts, indicating that the phenomenon is not confined ta@nlyOn
the other hand, we did not find strong evidence above of global periodic delay variation among the
highly-synchronized North American sites. Thus, we conclude that the phenomenon is definitely
present, but, if widespread, at least not globally synchronized.

16.3 Timing compression

Packet timingcompressioroccurs when a flight of packets are sent over an inteiVa)
but arrive at the receiver over an intervsll’., with AT, < AT;. To first order, compression should
not occur, since the main mechanism at work in the network for altering the spacing between packets
is queueing, which in generaxpandsflights of packets, as later ones have to wait behind the
transmission of earlier one§ 4.2). However, compression can occur if a flight of packets is at
some pointheld upby the network, such that transmission of the first packet stalls and the later
packets have time to catch up.

Zhang et al. predicted from theory and simulation that acks could be compressed (“ack
compression”) if a flight arrived at a busy router (one with a significant queue), and if no intervening
packets arrived between the different acks [ZSC91]. As the acks queue behind one another, the
potentially large spacing between them due to self-clockin®.Z2.5) and ack-every-other policies
(§ 11.6) would then be lost when the acks were later transmitted back-to-back upon reaching the
front of the queue.

This situation corresponds taodaaining queue: a router that was busy when the first ack
arrived (and hence could not service it before the others arrived), and yet new arrivals from other
traffic sources are sporadic. If instead new arrivals were steady, then they would occupy slots in the
gqueue between the acks in the flight, and their spacing would be (roughly) preserved, rather than
compressed.

Mogul subsequently analyzed a trace of Internet traffic and confirmed (among other phe-
nomena) the presence of ack compression [M092]. His definition of ack compression is somewhat
complex, involving significant deviations from the median inter-ack spacing, since he had to in-
fer endpoint behavior from an observation point inside the network (a vantage point problem, per
§ 10.4). But he clearly detected the presence of ack compression. He found that compression was
correlated with packet loss but considerably more rare. His study was limited, however, to a single
5-hour traffic trace.

Since we can readily compute from our data bath; and AT for any flight of packets,
we can use a simpler definition of compression than employed by Mogul. In this section we char-
acterize three different types of compression: ack compresgih6.8.1), data packet compression
(§ 16.3.2), and receiver compressignl@.3.3). We show that all three types of compression occur
within the Internet, though each is limited in its effects.
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Figure 16.18: Paired sequence plot showing ack compression

16.3.1 Ack compression

If ack compression is frequent, it presents two problems. First, as acks arrive they advance
TCP's sliding window and “clock out” new data packets at the rate reflected by their a§9val%).
For compressed acks, this means that the data packets dastertthan previously, which can
result in network stress. Second, sender-based measurement technigues such §s18BIPPan
misinterpret compressed acks as reflecting greater bandwidth than truly available. On the other
hand, some researchers argue that occasional ack compression is beneficial since it provides an
opportunity for self-clocking to discover newly-available bandwidth.

To detect ack compression, for each group of at least 3 acks we compute:

AT, + C,
&= AT, C.’ (16.2)
whereC, andC are the receiver and sender's clock resolutions. Using Eqn 16.2 resfibeing
a conservative estimate, since by addifgn the numerator but subtractirdg, in the denominator,
we tend to inflate.

We consider a group of acks compressed4f 0.75. We term such a group@mpression

event In A7, 50% of the connections experienced at least one compression event,/dpd60%
did. In both, the mean number of events per connection was around 2, and 1% of the connections
experienced 15 or more. Almost all compression events are small, however, with only 5% spanning
more than five acks. Figure 16.18 shows a paired sequence plot of one of the larger events, in
which eleven acks were compressed. The solid squares indicate when the data packets were sent,
and the arrows stemming from them point to their arrival times at the receiver. The corresponding
acks (offset downward a bit, for legibility) are shown with hollow squares. The arrows from these

squares all stop at virtually the same point in tifie= 1.51, indicating that, even though the acks
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were sent over an interval of 77 msec, they arrived all together, aboytségOapart—compressed
by a factor of 100.

We also note that a significant minority (10—-25%) of the compression events occurred
for dup acks. These are sent with less spacing between them than regular acks sent by ack-every-
other policies, so it takes less timing perturbation to compress them. Compressed dup acks are only
slightly more likely to occur in a large burst than compressed regular acksy,loverall 5.1% of
the compression events consisted of six or more acks: 4.8% of the regular-ack compression events,
and 6.0

Finally, we classify compression events as “major” if the compression results in the acks
arriving at the data sender with a spacing less than that corresponding to the bottleneck bandwidth;
otherwise, we term the event “minor.” Major events are significant because they reflect a breakdown
in self-clocking—namely, the sender will transmit in response to them at a rate exceeding the bot-
tleneck bandwidth—and they also make sender-based bottleneck estimation difficult, since, unless
detected, they will lead to overestimates.

Let pg be the upper bound on the estimated bottleneck bandwidth, per Eqn 14.12. If a
flight of & packets arrives during an intenAlT;., and they together acknowledge a totabdiytes,
then we consider the flight to reflect a major compression event if;

b
AT,

> pg.

We apply this test to each ack compression event detectéchlyaly , except we omit the final

ack of the event. The reason for this omission is thganaly  finds compression events by con-
structing groups of acks for which< 0.75, and sometimes the final ack of the group is relatively
uncompressed compared to the others (i.e., it rafsédm a small value to a value ne@r75).
Consequently, we omit this final ack to avoid skewing the assessment of “major” events by our
methodology for grouping acks into events.

We find that in both\; and N>, about 75% of the compression events are major. This
figure only slightly diminishes if we confine our analysis to compressed “regular” acks, eliminating
compressed dup acks.

Of the major compression events, 80% reflect acks arriving at a rate corresponding to more
than twicepg. Thus, when compression occurs, it is usually large enough to result in a significant
overestimate of the bottleneck bandwidth.

From these findings, we conclude that ack compression definitely occurs in the Internet,
but rarely enough as to not pose a significant problem by corrupting self-clocking or causing ex-
cessive burstiness. That it occurs for more than half the connections, however, and that most of
these are “major,” indicates that a sender-based measurement schestesnploy filtering to re-
move extreme values from its bottleneck estimates, as otherwise it is very likely to overestimate the
bottleneck bandwidth, with perhaps disastrous consequences.

16.3.2 Data packet timing compression

For data packet timing compression, our concerns are different. Sometimes a flight of data
packets is sent at a high rate due to a sudden advance in the receiver's offered window. Normally
these flights are spread out by the bottleneck and arrive at the receiver with a digtabetveen
each packet§(14.2). If after the bottleneck their timing is compressed, then use of Egn 16.2awill
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Figure 16.19: Data packet timing compression

detect this fact unless they are compressed to a greater degree than their sending rate. Figure 16.19
illustrates this concern: the flights of data packets arrived at the receiver at 170 Kbyte/sec (T1 rate),
except for the central flight, which arrived at Ethernet speed. However, it was also sent at Ethernet
speed, so, forit ~ 1.

Consequently, we consider a group of data packets as “compressed” if they arrive at
greater than twice the upper bound on the estimated bottleneck bandwjdthye only consider
groups of at least four data packets, as these, coupled with ack-every-other policies, have the poten-
tial to then elicit a pair of acks reflecting the compressed timing, leading to bogus self-clocking.

These compression events are more rare than ack compression, occurring in only 3% of
the \V; traces and 7% of those iN. We were interested in whether some paths might be plagued
by repeated compression events due to either peculiar router architectures or network dynamics.
Only 25-30% of the traces with an event had more than one, and 3% had more than five, suggesting
that such phenomena are rare. But those connections with multiple events are dominated by a few
host pairs, indicating that some paths are indeed prone to timing compression. Figure 16.20 shows
an example. Here, the bottleneck rate is T1, which corresponds closely with the flatter slopes in the
plot.

Thus, it appears that data packet timing compression is rare enough not to present a sig-
nificant problem. That it does occur, though, again highlights the necessity for outlier-filtering when
conducting timing measuremerits.
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16.3.3 Receiver compression

A third type of timing compression occurs when the receiver delays in generating acks
in response to incoming data packets, and then generates a whole series of acks at one time. The
timing of these acks appears compressed to the sender, thotigin reasons of network dynamics,
but instead due to Iulls at its remote peer. Figure 16.21 shows the most striking example in our
traces, in which thébl receiver compressed 25 of its acks, sending them over a 2 msec interval
instead of over the 83 msec interval corresponding to the data packets they acknowledged. (Slightly
earlier, the receiver also compressed 6 other acks, as seen in the figure.)

Since receiver compression is an endpoint effect, its presence tells us nothing about the dy-
namics of the connection's Internet path. However, receiver compression remains quite interesting
because it is an additional noise element that any sender-only measurement scheme must contend
with. It also leads to the same consequences as true ack compression, namely a break-down of a
connection's self-clocking.

To assess receiver compression, we compute:

¢ = AT, + C,
ATy — C,’

whereAT, is the spacing between the generated adkg; is the spacing between the arriving data

packets (the ones that led to the acks), @pdgain is the receiver's clock resolution. Asin Eqn 16.2,

the addition ofC;. in the numerator and subtraction in the denominator mgkesnservative. We

consideré’ < 0.75 as indicating a receiver compression event. Note that our earlier analysis of

ack compression useAT, as the original spacing of a flight of acks, and then checks whether

that was compressed while the packets were in flight. Consequently, that analysi®tiomsfuse

ack compression with receiver compression: the earlier ack compression analysis only evaluates

compression due to network behavior.

We include delayed acks in our analysis, as these affect self-clocking. Sender-based mea-
surement techniques can generally detect delayed®atksboth N; and N>, we find that about
10% of the connections included a receiver compression event of at least three acks. Of these, about
three-quarters experienced only one receiver compression event, Ahdiane experienced more
than four, though, inVs, the upper limit was 15. Almost all events were only 3 acks in size (95%
in Nl, 80% inNg).

While these statistics indicate that receiver compression is fairly rare, and even less often
significant, we must note that, because receiver compressionesdpointeffect, these statistics
arenot necessarily representative of its frequency in the Internet as a whole. In particular, we find
that just a few sites cause the majority of the receiver compression events in our study, so we have
no way of telling whether other sites would tend overall towards more receiver compression or less.

Given this caveat, we note that we find receiver compression, like other forms of timing
compression, to be fairly rare. In particular, in our datasets it appears more rare than ack com-
pression, so, if this is a representative finding, then sender-based assessment of ack compression
caused by network dynamics will not be terribly skewed by the presence of receiver compression.

"It also has a measurement benefit: from the arrival rate of the compressed packets, we can estimate the downstream
bottleneck rate.

8Using the rule that an ack for less than two full segments was presumably delayed. This heuristic could fail in the
future, if TCPs begin to ack every packet, which they might do to accelerate the slow-start process.
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If the sender-based measurement employs filtering to remove outliers, as it needs to do anyway to
deal with ack compression, then receiver compression does not make the measurement significantly
harder.

16.4 Queueing analysis

In this section we develop a rough estimate of the time scales over which queueing occurs.
If we take care to eliminate suspect clocks (Chapter 12), reordered pagKi2sl], compressed
packets § 16.3), and traces exhibiting TTL shifts (which indicate routing changes; fgef), then
we argue that the remaining measured OTT variation is mostly due to queueing. Hence, we can
estimate queueing time scales by analyzing time scales of OTT variations.

For a given time scale;, we compute the queueing variation on that time scale as follows.
First, we partition the packets sent by a TCP into intervals of leng#or each interval, let; and
n, be the number of successfully-arriving packets in the left and right halves of the interval. If either
is zero, or ifn; < inr, or vice versa, then we reject the interval as containing too few measurements
or too much imbalance between the halves.

Otherwise, letm; andm, be the median OTTs of the two halves. We then define the
interval's queueing variation &s;; — m,|. Thus, we quantify the variation as how much the OTTs
changed over a time scale of but, by computing the change only as the difference between two
intervals of Iength§7, we include in the variationnly changes that occurred on the time scale.of
Changes that occurred on smaller time scales will in general all occur within either the left or right
half, and themedianof the half will not reflect the smaller-time-scale change. Changes occurring
on larger time scales will not in general result in variation between the two halves, and so likewise
will not enter into the computation.

By using medians, we attempt to reduce the effects of occasionally very large OTTs. We
found that means and standard deviations can often be unduly skewed by a small set of large OTTs.

The question remains how to summarize the interval changes. We investigate two different
summaries. In the first, we defin®(@), as the median ofn; — m,| over all such intervals. Thus,

AQ), reflects the “average” variation we observe in packet delays over a time scal@gfusing
medians, this estimate again is robust in the presence of noise due to non-queueing effects, or
transient queueing spikes. In addition, we comppfe™, the maximum observed difference across

any two halves of an interval of length AQ, thus summarizesustainedvariation on the time
scaler, while Q" summarizesurstsof variation on the time scale.

We now analyzeAQ, and Q#* for different values ofr, confining ourselves to vari-
ations in ack OTTs, as these are not clouded by self-interference and adaptive transmission rate
effects § 15.2). The question we wish to address is: are there partictdasn which most queue-
ing variation occurs? This question is particularly interesting because of its potential implications
for engineering transport protocols. For example, if the dominaist less than a connection's
RTT, then it is pointless for the connection to try to adapt to queueing fluctuations, since it can-
not acquire feedback quickly enough to do so. Or if, for example, the domin&nbn the order
of 1 sec, then that constant helps us determine the related constants—sucla'asfthdEWMA
estimators—governing how a transport connection should update its RTT estimate in order to com-
pute its retransmission timeout.

For each connection, we range throfh2®, ..., 2'% msec to find7, the value ofr for



= -

8
f=—3
@D = —
= ~—
—
 —
o
f=3 —
o
f=—=3 — )
pr=3
T T T T

Time (sec)

Figure 16.22: Ack OTT plot for a connection with= 4 sec forAQ,

)
=
=
Lo —
o~
=
[
= —
()
=
D
521
= =
Lo —
= =
o ]
[}
f—
S - =]
Dg E% = =
= =5 Oo
= o =& = 5 - 5 o
f==2 — [
Lo 05 [ = & [m] @D] i
E“ =] % [m] 5 =i =
T T T T
o 10 20 30

Time (sec)
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which AQ; or Q™ is greatest7 reflects the time scale for which the connection experienced the
greatest OTT variation, where the variatiorsisstainedf computed forA(@).-, andmomentarif
computed foilQ™?*. Figure 16.22 shows a plot of the ack OTTs for a connection with4 sec for

AQ);, indicating maximum sustained variation occurs on 4-second time scales. Figure 16.23 shows
a connection witlr = 1 sec forQ"**, which emphasizes the large increase in deldy at 20 sec.

For the first connection, the maxim@™** occurs forr = 64 msec, corresponding to the sharp
spike just afterI" = 1 sec. For the second, the maxima{), occurs forr = 4 sec, due to the
sustained variation on 4-second time scales (for this connection, other time scales haXe)arge

too, but the largest is for = 4 sec). Clearly, the time scales of maximsmstainedburstiness
versus those of maximupeakburstiness can differ considerably.

Before looking at the range ifi's for our measurements, a natural calibration question is
what sort ofr's we find for synthetic variations. We investigated this question by simulating 10,000
independent and identically distributed (i.i.d.) OTT variations. Each variation was simulated as a
random variable drawn from an exponential distribution wite= 1,° corresponding to an OTT
variation computed for one unit of time (the equivalen2éfmsec for the preceding discussion).

For 100 simulation rung; was always< 2 units of time forAQ,, and< 4 units of time forQ™*.

Thus, we see that correctly indicates that the variation is confined to small time scales. If we
simulate i.i.d. Pareto variations with = 1.01 (so, infinite variance and, just barely, finite mean),

we still find 7 confined to small time scales, never exceeding 4 units of time. Again, this is what we
would expect, because the fundamental time scale of change is one time unit, since the variations
are independent.

Figure 16.24 shows the normalized proportion of the connectioné, iand N> exhibit-
ing different values of* for AQ,. Normalization is done by dividing the number of connections
that exhibitedr by the number that had durations at least as long,a® that the prevalence of
short connections does not skew the distribution. For both datasets, time scales of 128-2048 msec
primarily dominate. This range, though, spans more than an order of magnitude, and also exceeds
typical RTT values. Furthermore, while less prevaléntalues all the way up to 65 sec remain
common, with\; having a strong peak at 65 sEC.

Consequently, the figure indicates teastained Internet delay variations occur primarily
on time scales of 0.1-2 sec, but extend out quite frequently to much larger time scales.

Figure 16.25 shows the same figure but 8F**. Here we see that basically the same
time scales dominate variation peaks, ranging from 128 to 1024 msec. Smaller time scales clearly
contribute, however, and so do larger time scales up to about 4 secMyitxhibiting a trend
towards still larger time scales, whilg; does not. We interpret the figure as indicating theak
Internet delay variations also occur primarily on time scales of 0.1-1 sec, but they too extend to
larger time scales, and quite often to smaller time scal@snsequently, it appears clear that there
is no single time scale of “burstiness,” which accords with the recent “self-similar” models of net-
work traffic [LTWW94], though, as a rule of thumb, most variation occurs on time scales of a
guarter-second to a half-second, a bit above usual connection round-trip times. Thus, it appears that
transport connectionsan feasibly adapt to queueing changes, but to do so they must act quickly,
within a few RTTSs, or else it will often be too late.

9The results are independentXfhowever, since only determines the size of the identically-distributed variations,
but not the time scales of the variations among them.
YManual inspection of traces with = 65 sec indicates that they do indeed exhibit their maximum variation on that
time scale, addressing the concern that perhaps the peaks were due to some other effect, and hence spurious.
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16.5 Available bandwidth

The last aspect of delay variation we look at is an interpretation of how it reflects the
available bandwidth In a packet-switched network, available bandwidth is a somewhat elusive
notion. The amount of bandwidth a connection might fruitfully use varies with time, as other cross-
traffic connections come and go. Frdjmnl6.4 we know that significant OTT fluctuations often
occur on time scales of 100-1000 msec, and for the upper end of this range (which actually extends
appreciably to much larger time scales), no doubt most of the fluctuations are due to connections
beginning or ending, rather than flights of packets within single connections beginning or ending.

Two existing approaches for estimating available bandwidthcprebe [CC96b] and
Treno [MM96]. cprobe works in conjunction withbprobe [CC96a], which we discussed in
§ 14.2. To estimate available bandwidth along a network matiobe first usesprobe to estimate
the bottleneck bandwidth along the patprobe then transmits four groups of probes, each probe
consisting of 10 ICMP echo packets (as wifltobe ). The echo packets are sent at a rate exceeding
that of the estimated bottleneck bandwidth, to make sure they attempt to fully utilize the bottleneck.
cprobe then computes from the timing of the ICMP echo replies the achieved throughput, and
considers the ratio between this and the bottleneck bandwidth to heiliration (similar to the
value which we define in Eqn 16.4 below), which indicates how much of the bottleneck bandwidth
was actually available.

cprobe has three limitations that we attempt to address. The first is that it requires
sending a fairly large flight of packets at a rate known to exceed what the network path can support,
socprobe can be viewed as fairlgtressfulto a network path. The second is that, because its
probes use ICMP echo packets, which elicit same-sized replies, the achieved throughput the probes
achieve will reflect theminimumof the available bandwidth along the forward and reverse paths.
As we have seen that many path properties are asymmetric, it would not be surprising to find that
available bandwidth is, too, and thus, for a unidirectional connectipropbe might produce too
pessimistic an estimate. The third limitation is that the pattern in which the probe packets are sent
differs from that in which a TCP sender will transmit its data packets. We have se&eh512
that, because TCP adapts its transmission rate to the presence of packet loss along the forward path,
network conditions observed by TCP data packets can differ significantly from those observed by
TCP ack packets. Thus, we suspect that available bandwidth estimates prodapesbby might
not closely reflect the throughput that a TCP would actually achieve.

This second point is addressed by the developers ofitéeo utility [MM96]. Treno
also uses ICMP echo packets to probe network paths, but it sends them using an algorithm equivalent
to that used by TCP congestion contrl(2). In addition,Treno can probe hop-by-hop available
bandwidth by using increasing TTL (time-to-live) values in the IP headers of the echo packets it
sends, just as doesaceroute  (§ 4.2.1). When doing so, it receives in response from each hop
(except the last) not a full-sized echo reply, but a short ICMP Time Exceeded message. Thus, even
if the available bandwidth along the return path is less than that along the forward g, will
still primarily observe the forward-path available bandwidth, just as would a TCP connection that
receives only data-less acks in response to its data packets.

The main drawback dfreno is that it is astressfutechnique. It estimates how fasta TCP
could transfer data over a given network path by seeing how fast it itself can transfer data over the
path, using a standard-conformant, but well-tuned, implementation of the TCP congestion control
algorithm.
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Ideally, we would like to estimate available TCP bandwidtithout fully stressing the
network path to do so. We do not achieve this goal in our present work. Instead, in this section
we analyze our TCP transfer data both to characterize available bandwidths in the Internet, and to
explore how we might perhaps in the future develop a non-stressful available-bandwidth estimation
technique, based on fine-scale analysis of TCP packet timings. For this technique, the hope is that
by carefully scrutinizing the delays of individual TCP packets, we might form a good estimate of
the bandwidth available along the path they were sent, without requiring that we send the packets at
a rate that saturates the path for any lengthy period of time.

We proceed as follows. First, we need to define what we mean by available bandwidth.
We might argue that, if we know that a connection is competing Wwitther connections, then its
fair share of the network resourceg;’t%. In particular, the connection's fair share of the bottleneck
bandwidth,pp, is ,f—ﬂ. These simple notions, however, quickly run into difficulties. First, during a
connection's lifetime, competing connections come and go, so there is no single value to assign to
k. Second, the competing connectionsmibin general compete along the entire end-to-end path,
but only for a portion of it, so there may in fact be a great number of competing connections, but
each competing for different resources. Finally, “fairness” itself is an elusive notion: it might well
be the case that, for policy reasons (such as who is paying for what), or due to different traffic types,
the simple each-gets-an-equal-share division of the resources is deemed inappropriate. (See [FI91]
for further discussion of the difficulty of defining a single notion of fairness.)

With these considerations in mind, we now strive to develop a notion of “equivalent com-
peting connections,” in order to talk in general terms about available resources. To do so, we attempt
to characterize the network resources available to a connection as a fraction of the total resources
in use. The term we will use to capture this notion is “available bandwidth.” Here we presume
that connections push on the network to extract as much resource from it as they can—TCP's slow
start does exactly this. Therefore, if a connection pushes on the network and we observe that it
consumedn units of resources, and we can determine that other connections consuméd of
the same resources, then we will consider the available bandwidiff-asor, equivalently, that,
over its lifetime, the connection competed with the equivalerf afther connections like itself.

We will use as our unit of resource the amounts of buffer space and transmission time
the connection consumed at the bottleneck link.§ Ib5.2 we developed a notion of data packet
i's “load,” A;, meaning how much delay it incurs due to queueing at the bottleneck behind its
predecessors, plus its own bottleneck transmission tifnewhich is directly determined by the
packet's size and the bottleneck bandwidth. Let

i = Xi — di, (16.3)

namely, just the amount of a packet's delay that is due to queueing behind its predecessors.
Let~y; denote the difference between packstimeasured OTT and the minimum observed

OTT (for full-sized packets). If the network path is completely unloaded except for the connection's

load itself (no competing traffic), then we should haye= ~;, i.e., all ofi's delay variation is due

to queueing behind its predecessors. More generally, define

_ > (i + ¢i)
Zj ('Yj + ¢])

we do not, however, presume that theasurement technigiier estimating how much bandwidth is available must
also do so.

B (16.4)
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0 then reflects the proportion of the packet's delay due to the connection's own loading of the
network. If 8 = 1, then all of the delay variation is due to the connection's own queueing load on
the network, while, ifg ~ 0, then the connection's loadiissignificantcompared to that of other
traffic in the network.

More generallyy_; (1; + ¢;) reflects the resources consumed by the connection, while

Z(’Yj—i_@bj)_z ¢z+¢z Z'yj Zd’z
i i 3
reflects the resources consumed by the competing connections.

Note that including the); terms in Eqn 16.4 is important: they reflect the basic bottle-
neck transmission cost. Without them, a connection that does not load the bottleneck link (perhaps
because its transmission perfectly matches the bottleneck rate) will exhibit

> ap =0.
In this case, any slight variation in its OTTs, i.e.,

Z’}/j:6>0,
J

will result in 5 = 0. But in this limiting case we want our evaluation to indicate that almost all the
resource was available (as indicatedXy~; being small), and this is exactly the limiting behavior
of Eqn 16.4.

Thus, 3 captures the proportion of the total resources that were consumed by the connec-
tion itself, and we interpret as reflecting thevailable bandwidth Values ofg close to 1 mean
that the entire bottleneck bandwidth was available, and values close to 0 mean that almost none of
it was actually available.

Note that we can havé ~ 1 even if the connection does not consume all of the network
path's capacity. All that is required is that, to the degree that the connection did attempt to consume
network resources, they were readily available. This observation provides the basis for hoping that
we might be able to usé to estimate available bandwidth without fully stressing the network path.

We can gauge how weft truly reflects available bandwidth by computing the coefficient
of correlation betwee and the connection's overall throughput (normalized by dividing by the
bottleneck bandwidth). Fok/7, this is 0.44, while, for\s, it rises to 0.55. We conjecture that the
difference is due to the use of bigger windows\i (§ 9.3), which lead to more opportunities for
fast retransmission. Any time a connection times out, its overall throughput becomes greatly diluted
by the lengthy timeout lull.

Thus, the correlations, particularly faf,, indicate tha{3 is indeed a solid predictor of a
connection's likely overall performance. It is not a perfect predictor, however, nor would we expect
it to be: a TCP connection's overall throughput is affected by the number of retransmissions it
incurs, whether any of these are timeout retransmissions, the receiver's offered window, the sender's
internal window § 11.3.2), how the TCP manages the congestion window, and the acking policy
used by its remote peer, which determines how fast the slow-start sequence increases the window
(§11.6.1).

Figure 16.26 and Figure 16.27 show the density3dbr N, andN,. Values less than
zero and greater than one, which can result from erroneous estimates bave been adjusted
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to zero and one, respectively. Clearly, Internet connections encounter a broad range of available
bandwidths, ranging from very little to almost al/;'s main mode lies at 0.30-0.35, corresponding

to about two equivalent competing connections, whileXgrthis shifts considerably downward, to
about 0.10-0.15, or eight equivalent competing connections. The overall decrg¢hsetimeen\/;

and; is clear, though theV; density diminishes less quickly than that/df, indicating that for

it, especially, the range of available bandwidth was indeed very broad. Unfortunately, it is difficult
from these statistics to make a definitive statement about how available bandwidth changed over
the course of 1995, because the use of bigger windéw&3) in A, means that the notion of
“equivalent connection” is different between the two datasets. It is not clear how we could adjust
for this difference in order to directly compare the two.

Both densities exhibit two “edge” effects: a greatly diminished density at 0.0-0.05, and a
second mode at 0.95-1.0. The first most likely reflects the measurérasntur experiment suffers
from due to the limited lifetimes of each connectidr9(3): those connections for which very little
bandwidth was available often did not finish within the allotted ten minutes, and thus do not figure
into the measured distribution Gf

The second mode at 0.95-1.0 at first appears to indicate that sometimes a network path
is completely quiescent, and packets sail along it without any cross traffic perturbing them. This,
however, turns out to only sometimes be the case. Closer inspection of those connections with
0 = 1 reveals that many are connections with low bottleneck bandwidths. These connections very
often are able to completely fill the bottleneck link, because, even if the network can provide only a
few non-bottleneck resources to the connection, these still suffice to drive the bottleneck at capacity.
That s, the connection requires only modest resources available elsewhere to saturate the bottleneck
link and achieve the maximum possible end-to-end performance. We summarize this eftéct as:
you only want to go slowly, the network often can provide enough resources for doing so.

Figure 16.28 and Figure 16.29 show the same densities if we restrict the analysis to con-
nections withpg > 100 Kbyte/sec. We see that, fav;, doing so completely eliminates the sec-
ondary “all bandwidth available” peak, though, o, it only slightly diminishes it. The difference
again appears due to the use of bigger window#/in Figure 16.30 shows th&/, densities if
we restrict ourselves tpg > 250 Kbyte/sec. Doing so eliminates the T1- and E1-limited con-
nections, which with the bigger windows thé, connections could often fill to capacity, much as
the /7 connection could for the slower bottleneck links. Now, the second peak has disappeared,
indicating that, at these speeds, the connections could no longer often utilize the entire bottleneck
bandwidth!® We see that, overalhs path bandwidths increase, proportionally less bandwidth is
available to connections using the paffhis observation is not too surprising: higher bandwidths
naturally attract higher traffic loads.

Our observations so far have been based on the lgadnd the bottleneck transmission
time, ¢;, per Egn 16.3. Both are computed using teatral bottleneck bandwidth estimateg.

The PBM algorithm, however, produces upper and lolb@rndson the estimate, too, denoted by
p and py (Eqn 14.12). We can accordingly defing (¢; ) and A" (¢;"), based on the upper

2\We do not discard these connections because sometimes only a slight esgomiill lead to an “out of range”

estimate for3, if the connection occurred at a time during which very little or almost all of the bandwidth was available.
This point will be developed in more depth shortly.

13The depression at 0.0-0.05 has grown, too, a change likely due to the fact that, for high-bandwidth paths, a TCP
connection can transfer 100 Kbyte in 10 minutes even in the face of many competing connections, so the measurement
bias discussed earlier does not apply to such a large degree.
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Figure 16.32: Distribution ofV; maximum inferred available bandwidt¥)(for connections with
bottleneck rates exceeding 100 Kbyte/sec

and lower bounds, respectively, and from them comgtiteand 5, lower and upper bounds of
the available bandwidth. Figure 16.31 and Figure 16.32 show the densiti&s afid 3 for the
connections in theV; dataset withpg > 100 Kbyte/sec.

The density of3~ fairly closely matches that gf given in Figure 16.28, but shifted
about 0.05 to the left, except for the upper regime, which is shifted by about 0.15 to the left. The
density of 3", however, shows roughly the same shape shifted about 0.1 to the right, except for a
striking spike a3 ~ 1. This spike is telling: three-quarters of it is f8 > 1, which is an unphys-
ical situation, namely, that the connection's load on the path exceeds the total variation observed
on the path. Thus, the spike indicates thgt from which 3" is derived, iserroneously too low
Because it is too low, the corresponding loakl$, are too high. Furthermore, the loads can rapidly
becomemuchtoo high, due to self-clocking: if the connection is indeed transmitting at exactly the
bottleneck rate, which self-clocking will promote in the absence of significant cross-traffic, then
each packet's load will be zero, or perhaps will correspond to one additional packet at the bottle-
neck link if the receiver uses ack-every-other (so the window advances by two packets at a time). In
this case, a slightly low estimate pf; will result in a determination that the load continually builds
up, since the bad estimate will imply that packets are being sent at a rate exceeding the bottleneck’'s
capacity, and hence the queue at the bottleneck grows and grows (per Figure 16.13).

Consequently, we should not trust the variation betwgemd 3T as reflecting the true
error-bar range if's density; but that betweghand3— does not suffer from this problem. Based
on the latter, then, we conclude that the error in our estimatgsi®fabout+0.1, with somewhat
lower errors for small values ¢@f, and somewhat higher errors for larger values. This level of error
is not large enough to alter any of the conclusions drawn above.

As we might expect, we find th#t is inversely correlated with data packet loss rate. For
both /7 and A5, for connections withpg > 100 Kbyte/sec, the coefficient of correlation between
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Figure 16.33: Distribution alV; inferred available bandwidthsj for U.S. connections

0 and the loss rate is0.36. This provides us with a solid connection between delay variation and
packet loss, which agrees with the widely held assumption that most packet loss in the Internet is
due to congestion (which will first lead to delay variations as queues build up). The connection is
not overwhelmingly strong, however, which we would also expect, because delay variation need not
lead to packet loss if the congested element contains sufficient buffer space to absorb the variation.

That and loss rate are negatively correlated suggests that we might find significant re-
gional variation ing, much as we did for loss rates §nl5.1. Indeed, we do. Figure 16.33 shows
0 for connections wittpp > 100 Kbyte/sec and with both sender and receiver sited in the United
States. Figure 16.34 shows the same for sender and receiver both sited in Europe. Clearly, European
sites suffer from much lowe#'s than their U.S. counterparts, with the mean (and median) European
0 at 40%, while for the U.S. connections, it is just under 60%.

The last aspect of available bandwidth we investigate is how it evolves over time. To do
S0, we group connections with the same source and destination hosts together, after eliminating any
with pp < 100 Kbyte/sec. For successive connectierendc’ in each group, we compute the pair
(AT,,|AB:|), whereAT, is the time betweenandc’, and|A 3, | is the magnitude of the difference
between the compute@d s for each connection.

After constructing these pairs, we sort themAf, and then computéA .| smoothed
using an exponentially-weighted moving average with= 0.01 and an initial value of 0. Fig-
ure 16.35 shows the resulting smoothed evolution forthedataset. (TheV; dataset exhibits a
similar evolution.) We see that\5.| almost immediately rises to about 0.12, which is somewhat
higher than the error range we estimated foabove, but not greatly highét. This level is sus-

4The exponential smoothing, along with starting the averaging with an value of 0, limits how rapidly the plot can
reach this level. This is what creates the plotting artifact of what appears to be a rapid climb, falsely suggesting that
|AB.| is significantly smaller for very low inter-connection times. A more sound interpretation is that even for very low
inter-connection times, we will usually firjd\ 3. | already quite close to 0.12.
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tained for a number of hours, after which it increases markedly, by about 50%. The transition no
doubt coincides with the diurnal cycle we notedih5.1: the network is much more congested dur-

ing working hours than during off hours. Since the predictive power is, qualitatively, fairly good for
time scales of several hours, we conclude that transport connections can fruitfully cache information
regarding a path's available bandwidth for use in subsequent connections.



